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Abstract—Automatic Dependent Surveillance-Broadcast
(ADS-B) has been widely adopted as the de facto standard
for air-traffic surveillance. Aviation regulations require all
aircraft to actively broadcast status reports containing identity,
position, and movement information. However, the lack of
security measures exposes ADS-B to cyberattacks by technically
capable adversaries with the purpose of interfering with air
safety. In this paper, we develop a non-invasive trust evaluation
system to detect attacks on ADS-B-based air-traffic surveillance
using real-world flight data as collected by an infrastructure of
ground-based sensors. Taking advantage of the redundancy of
geographically distributed sensors in a crowdsourcing manner,
we implement verification tests to pursue security by wireless
witnessing. At the core of our proposal is the combination
of verification checks and Machine Learning (ML)-aided
classification of reception patterns—such that user-collected data
cross-validates the data provided by other users. Our system is
non-invasive in the sense that it neither requires modifications
on the deployed hardware nor the software protocols and only
utilizes already available data. We demonstrate that our system
can successfully detect GPS spoofing, ADS-B spoofing, and even
Sybil attacks for airspaces observed by at least three benign
sensors. We are further able to distinguish the type of attack,
identify affected sensors, and tune our system to dynamically
adapt to changing air-traffic conditions.

I. INTRODUCTION

The monitoring of air traffic has evolved from an analog
Radio Detection and Ranging (RADAR)-based system to a
digitally-aided surveillance infrastructure. Effective from Jan-
uary 1, 2020, all aircraft are required to be equipped with an
Automatic Dependent Surveillance-Broadcast (ADS-B) system
to access most of the world’s airspace [54], which hence con-
stitutes the de facto standard for air-traffic monitoring. ADS-B-
capable transmitters periodically broadcast status reports that
inform others about their identification, position, movement,
and additional status codes.

While the aviation industry is characterized by very long
development cycles—up to several decades—, applications

that mandate high safety guarantees are usually lagging behind
advancements on the security side. As such, ADS-B reports
are neither encrypted nor authenticated. At the same time,
the open specification of ADS-B promotes the collection and
free usage of aircraft reports. Simple sensors can decode
aircraft broadcast reports and gain a real-time view of their
surrounding airspace. A network that combines more than
1000 user-operated ground-based sensors in a crowdsourcing
manner is the OpenSky Network [39]–[42], [47]. This network
collects and stores air-traffic data from around the world and
makes them available for research.

Since ADS-B lacks fundamental security practices, the
exposure to cyberattacks targeting air traffic has long been
discussed [5], [19], [24], [35], [36], [43], [44], [48]. These
works demonstrate how attackers can interfere with aircraft
sensors and how fake aircraft messages can be injected into
air-traffic monitoring systems [5]. For instance, adversaries
with commercial off-the-shelf hardware and moderate knowl-
edge can generate arbitrary messages mimicking valid ADS-B
reports [44], [48]. The consequences of such attacks range
from distraction on the flight deck or in the control room
up to violations of mandatory safety separations, and even-
tually increasing the possibility of aircraft collisions. Since
the implementation of these attacks is far from being only
of academic nature, security solutions are urgently needed
to protect the integrity of air-traffic surveillance [4]. In fact,
data trust establishment is an open and central problem in the
aviation industry and emerging concerns have already reached
the public [4], [11], [14], [15], [63].

To answer the demands for more security in the safety-
driven aviation industry, we propose a data-centric [32] trust
evaluation system with the goal of assessing the trustwor-
thiness of ADS-B reports using data that is already col-
lected at wide scale. We refer to trust in the sense that
messages are trustworthy when they originate from functional,
non-malicious sources. In contrast, error-prone or attacker-
controlled messages trying to harm the system should be
detected. Furthermore, we explore the identification of the type
of attack and the traceability of malicious sensors.

The development of such a system faces several challenges
imposed by the highly regulated aviation industry. Viable
solutions need to be non-invasive in the sense that they do not
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require any modifications on the deployed hard- and software.
In particular, security systems should not interfere with other
systems already in place to avoid lengthy (re)certification
processes [4]. Preferably, solutions are augmentation systems
that operate autonomously with sensor input already available.
We develop our system to fulfill all these challenges.

At the core of our system, we make use of the crowd-
sourcing nature of a sensor network in which user-collected
data cross-validates data provided by other users. Forming a
network of trusted sensors based on mutual auditing, we pursue
wireless witnessing. Wireless witnessing is the collaborative
process of observing the status of a distributed wireless system.
We apply it in the security context to assess and validate the
trustworthiness of ADS-B reports. In particular, we implement
a Machine Learning (ML)-based verification test that is trained
on typical message reception patterns1. The collaboration of
sensors characterizes expected reception patterns of aircraft
reports transmitted from certain airspace segments while auto-
matically factoring in natural message loss.

Our system can reliably differentiate between normal air-
traffic broadcasts and suspicious reports diverging from ex-
pected patterns if at least three sensors observe the same
airspace. This assumption is already fulfilled by the majority
of the considered airspace. Furthermore, our system can recog-
nize the type of attack, e. g., GPS spoofing or ADS-B spoofing
to trace affected sensors and identify the sensor redundancy
as an important factor. While minimizing false alarm events,
we achieve detection rates beyond 95% for moderate GPS
spoofing deviations and any form of ADS-B spoofing. To
further harden the network against attacks, new sensors can be
integrated by providing consistent snapshots of their airspaces.
Since our system is solely based on an already existing infras-
tructure and does not require any modifications on aviation
systems, it is non-invasive and could be implemented today
easing very long certification processes. In contrast to existing
solutions for air-traffic verification [10], [21], [22], [26], [37],
[38], [52], [60], we do not require the measurement of time,
frequency shifts, or any PHY layer features, but only use
discrete sensor events.

In summary, the contributions of this paper are:

� We propose the first comprehensive approach to evaluate
the trustworthiness of ADS-B aircraft reports based on an
existing infrastructure of crowdsourcing sensors.

� We demonstrate the applicability of our approach by
incorporating real-world flight data collected by geo-
graphically distributed sensors at a large scale.

� We simulate prominent attacks on GPS and ADS-B,
detect their presence via validation in our trust system,
and draw conclusions about their type and origin.

� We elaborate on network expansion and optimized sensor
deployment to further harden the network against attacks
in the future.

II. SYSTEM AND ATTACKER MODELS

We first describe today’s air-traffic monitoring techniques
with a focus on ADS-B. We then introduce our trust definition
and present the consolidated system model. Finally, we define
the considered attacker model.

1https://github.com/kai-jansen/ADSB-Trust-Evaluation

A. Air-Traffic Monitoring

In recent years, traditional analog RADAR-based systems
for air-traffic monitoring have been augmented with digital
means for active wireless communication. For the communi-
cation with ground stations and other aerial vehicles, aircraft
are mandated to be equipped with ADS-B transponders that
periodically broadcast status reports [54]. These reports contain
aircraft identification, information on speed, track, and accel-
eration along with further observation data. The positioning
information is mainly derived via GPS, which is the preferred
method for self-localization.

Since the ADS-B protocol is openly specified, the mod-
ulation and data frame patterns are known. ADS-B operates
at a frequency of 1;090MHz and the typical reception range
can reach up to 700 km. The signals can thus be received by
simple consumer-grade hardware such as Universal Software
Radio Peripherals (USRPs) [9] or even cheaper Software
Defined Radios (SDRs) like RTL-SDR dongles [33], which
are available for as low as $20. The availability of SDRs not
only allows passive eavesdropping but also led to software
tools for active ADS-B transmission [6] or the generation of
fake GPS signals [28]. Surprisingly, the ADS-B protocol lacks
fundamental security measures, and neither applies encryption
nor authentication.

B. Trust Definition

We define trust in our system as the certainty of an ADS-B
report to be the result of normal behavior and not disrupted by
malfunctioning or active manipulation. To this end, a trusted
report represents valid data transmitted by genuine sources.
On the other hand, an untrustworthy report is either erroneous
or contains fake data that should be discarded from further
processing. While the traditional notion of trust had been
entity-centric and rigid, today’s fast-changing ad hoc networks
necessitate the adjustment of trust models.

Hence, we seek to establish a data-centric trust model
in consideration of short-lived associations in volatile envi-
ronments as mentioned by Raya et al. [32]. In particular,
we design a trust system that is driven by data collected by
geographically distributed sensors that share their observations
within a network. The combination of redundant views enables
the system to cross-validate data and eventually establish a
form of wireless witnessing.

C. Consolidated System Model

We consider the following system model. Aircraft that are
equipped with an ADS-B transmitter periodically broadcast
status reports which among other information include GPS-
derived positions. A set of geographically distributed sensors
receive these reports and their observations are shared with
others in a crowdsourcing manner. A central server collects and
processes the forwarded observations. Overall, we are faced
with the high mobility of aircraft, while the receiving sensors
are stationary and are less likely to move significantly. Figure 1
depicts an overview of our system model that we consider to
assess the trustworthiness of ADS-B reports.
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Fig. 1. Our considered system model of aircraft using GPS satellite signals
for self-localization and ADS-B sensors forwarding aircraft reports to the
processing central server.

D. Considered Adversary

Our adversary model comprises several prominent attack
vectors, which we categorize according to their intended target
and their scope. Table I shows an overview. We evaluate our
proposed system against these attacks. Moreover, we will argue
in Section VI-C that even attackers with complete knowledge
about our verification scheme cannot bypass our implementa-
tion of wireless witnessing and can still be detected.

GPS Spoofing. The airborne (self)-positioning sensors process
received GPS signals from multiple satellites to embed the
results in the broadcasted ADS-B reports. One attack scenario
considers the spoofing of GPS signals where an attacker
sends out specially crafted signals at a considerable signal
strength [16], [53]. As a result, an attacker can inject false
positioning or timing information into the aircraft systems
inducing the processing of fake attacker-controlled data [19].

ADS-B Spoofing (Single). An attacker capable of generating
fake ADS-B messages can transmit arbitrary reports with full
control over their contents [5], [24], [36]. These bogus reports
may represent, e. g., any aircraft identifier, positioning solution,
or movement information. Receivers of such messages will de-
code the message contents and forward the sensed information
to the central server. We differentiate this attack according to
the number of affected sensors. An attacker that is limited in
its effective range is likely to only affect single sensors due to
their broad spatial distribution.

ADS-B Spoofing (Multiple). A large-scale attacker may also
be capable of targeting multiple geographically distributed
sensors at the same time. This attacker, however, requires
multiple antennas or a high elevated high power antenna. The
attack is conducted in a broadcast fashion and is expected to
affect all sensors within its targeted area. As a result, more than
one sensor would receive the same fake report and forward it
to the central server.

Sensor Control. Due to the open nature of the surveillance
network, attackers may operate their own sensors and become
part of the crowdsourcing infrastructure. Having full control
over a sensor, an attacker is able to inject arbitrary data
encapsulated in genuine ADS-B reports [36]. This attack can
be performed without broadcasting any signals and can be
directly conducted on the network level.

TABLE I. ATTACK VECTORS

Target Attack Scope Effort

Aircraft GPS Spoofing - Moderate

ADS-B Sensor(s) ADS-B Spoofing Single Moderate
Multiple High

Central Server Sensor Control Single Low
Sybil Attack Multiple High

Sybil Attack. A large-scale attacker operating a significant
number of sensors can perform a Sybil attack [7] with the
purpose of overruling the network’s protection systems. The
sensors may be deployed at different locations to influence
several redundant views at the same time. This constitutes one
of the most powerful attack against sensor networks.

III. DESIGN OF AN ADS-B TRUST SYSTEM

We propose a system to establish a dynamic verification of
ADS-B messages for air-traffic surveillance. We first describe
the specifics of the analyzed data and state general network
statistics. We then define (i ) three verification tests checking
the contents of a message and (ii ) one ML-based classification
of the report metadata, i. e., the reception pattern.

A. Data Source Specifics

As the source of our considered data, we utilize real-world
air-traffic data from the OpenSky Network [39]–[42], [47]. The
sensors are installed and operated by volunteers, who can either
remain anonymous or opt to register by providing personal
information. Over 1000 sensors promote the coverage of the
network that exhibits a particular high sensor density in Europe
and on the American continent. The network relies on user-
provided data, processes it on centralized servers, and offers
access to the collected data of around 20 billion messages
per day. It is noteworthy that nodes in the network are not
equipped with any cryptographic means or certificates, which
would hinder the growth of the sensor network and contradict
the easy access to the crowdsourcing platform. While other
air-traffic sensor networks exist, we make use of the research-
friendly data sharing of this network.

For the sake of simplicity, we initially restrict the consid-
ered ADS-B reports to the European airspace where the Open-
Sky Network sensor density is the highest. To further reduce
complexity, we divide this space into non-overlapping square-
shaped clusters C with edge lengths of approx. 10 km. In total,
the considered environment becomes the union of 232;139
different clusters Cj 2 C.

In order to get a better understanding of the data provided
by the OpenSky Network, we visualize the sensor coverages
and the number of processed ADS-B messages with respect to
their spatial distribution. These evaluations are based on data
collected from an entire day (February 15, 2020) resulting in
a total of 132;883;464 messages broadcasted by real aircraft.
Figure 2 depicts a heat map of the spatial distribution of
all recorded ADS-B reports. As one can see, most reports
originated from a few cluster areas close to central European
airports. Notably, the database only contains messages that
reached at least one contributing sensor.
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Fig. 2. Spatial distribution of captured ADS-B reports from the OpenSky
Network in Europe as of February 15, 2020.

The overall coverage of the network is the combination of
all participating sensors. Since sensor coverages can signifi-
cantly overlap with each other, the redundancy is higher in
areas with more sensors as compared to rural areas. Figure 3
shows the aggregated sensor coverage of the OpenSky Network
as of February 15, 2020. The heatmap depicts the number of
sensors that simultaneously cover an indicated area. A total of
729 different sensors reported data for the considered airspace.
We notice a strong dominance in Central Europe, where
the most participating sensors are operated. Nevertheless, the
coverage of the sensor network also limits the applicability of
our system. Airspaces covered by no sensors are not protected.

B. Notations

For the remainder of this paper, we use the following
notations. The network is formed by a set of ground-based
sensors S, where each sensor is referred to as Si 2 S.
Each ADS-B message m can be received by an arbitrary
number � 1 of sensors Si , hence the link (m; Si ) exists.
Due to noise effects and message collisions, message loss can
naturally occur and we denote the probability that sensor Si

receives a message transmitted from cluster Cj as Prec(Si ; Cj ).
Moreover, the messages are timestamped by the receiving
sensors, where t is the issued timestamp. When a message
is not picked up by any sensor, it is consequently not in the
considered database. Table II summarizes the used notations.

TABLE II. PARAMETER NOTATIONS

Parameter Notation

Cluster C
ADS-B Sensor S
ADS-B Message m
Time t
Probability of Reception Prec (S; C )

Fig. 3. The aggregated sensor coverage of the OpenSky Network with a
strong dominance in Central Europe as of February 15, 2020.

C. ADS-B Message Trust

In order to assess the trustworthiness of ADS-B messages,
we design an evaluation process consisting of four verification
tests, namely (i ) sanity, (ii ) differential, (iii ) dependency, and
(iv ) cross check. While the former three tests are stated for the
sake of completion, we focus on the cross check that is tailored
towards the existing sensor infrastructure to implement wire-
less witnessing. The system overview is depicted in Figure 4
and is developed in the following.

1) Sanity Check: The sanity check represents a message
content verification with respect to defined value ranges.
Where data values are not restricted by definition, we apply
physical possibility bounds. Sanity checks are specific to the
message content, i. e., the reported aircraft status. Table III
provides an overview of the implemented sanity check.

Position. The reported position contains information about
the latitude, longitude, and altitude. The latitude is only
defined in the range of �90� to 90� , whereas the longitude
is defined over �180� to 180� . The altitude is not bounded
by its definition but by physical restrictions ranging from
approx. �3m, which is the altitude of the lowest European

TABLE III. SANITY CHECK

Category Parameter Range

Position
Latitude � 90� to 90�

Longitude � 180� to 180�

Altitude � 3 m to 20;000 m

Movement
Velocity 0 km=h to 1;200 km=h
True Track 0� to 360�

Vertical Rate � 50 m=s to 50 m=s

Identification ICAO Identifier Registered Aircraft
Call Sign Assigned Call Signs

4


