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ABSTRACT
Unmanned Aerial Vehicles (UAVs), better known as drones, have
significantly advanced fields such as aerial surveillance, military
reconnaissance, cadastral surveying, disaster monitoring, and de-
livery services. However, UAVs rely on civilian (unauthenticated)
GPS for navigation which can be trivially spoofed.

In this paper, we present DeepSIM, a satellite imagery matching
approach to detect GPS spoofing attacks against UAVs based on deep
learning. We make use of the camera(s) a typical UAV is equipped
with, and present a system that compares historical satellite images
of its GPS-based position (spaceborne photography) with real-time
aerial images from its cameras (airborne imagery). Historical im-
ages are taken from, e. g., Google Earth or NASA WorldWind. To
detect GPS spoofing attacks, we investigate different deep neural
network models that compare the real-time camera images with
the historical satellite images. To train and test the models, we have
constructed the SatUAV dataset (consisting of 967 image pairs),
partially by using real UAVs such as the DJI Phantom 4 Advanced.
Real-world experimental results show that our best model has a
success rate of about 95% in detecting GPS spoofing attacks within
less than 100 milliseconds. Our approach does not require any modi-
fication of the existing GPS infrastructures and relies only on public
satellite imagery, making it a practical solution for many everyday
scenarios.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • In-
formation systems → Global positioning systems; • Computer
systems organization→ Embedded and cyber-physical systems.
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1 INTRODUCTION
In recent years, there has been growing interest in UAVs that are
increasingly used in many scenarios [63]. As high-performance,
low-cost, and intelligent UAVs have become more affordable and at-
tainable, UAVs have experienced a quick transition from themilitary
to the civilian domain. For example, the FBI has started to utilize
UAVs for both public surveillance and military reconnaissance [55].
A second example is that the International Telecommunication
Union (ITU) is considering a UAV-aided 5G wireless communica-
tion framework [51]. Additionally, after the devastating earthquake
and the following disastrous tsunami in Fukushima, Japan in 2011,
a Honeywell T-Hawk UAV equipped with special radiation sensors
was used for investigating the damaged reactor, where humans
could not approach [49].

Although deploying applications based on UAVs has strong ben-
efits, unfortunately, a few accompanying risks have gradually ap-
peared [40]. Media reports with respect to cyber-attacks on UAVs
have become common. For instance, in 2012, a rotor-based UAV,
Camcopter S-100, whose GPS signal was blocked by an unknown
actor, then crashed into a ground control van, killed an engineer and
injured two remote pilots [28]. Moreover, our work is further moti-
vated by a real-life spoofing attack: the well-known Iran-U.S. RQ-
170 incident, where an American UAV was captured by Iranian
forces near the city of Kashmar in 2011 due to jamming satellite
signals, followed by a GPS spoofing attack [53].

In this paper, we study the problem of detecting GPS spoofing
attacks for the specific context of UAVs. Our approach is to compare
the difference between aerial photos taken by camera-enabled UAVs
and pre-existing satellite images as a form of out-of-band location
verification. Both a GPSmodule and a visual sensor such as a camera
are usually outfitted in a UAV system. Attackers hardly affect the
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visual information using traditional GPS spoofing antennas. By and
large, it is also very difficult for an attacker to carry out attacks for
vision by changing the geographic features in the real world. As
a consequence, visual equipment could be used as an alternative
reference for GPS spoofing attack detection due to its independence.
As a proof of concept, we presentDeepSIM, a GPS spoofing detection
approach for UAVs via satellite imagerymatching; the system design
of DeepSIM is shown in Figure 1. We also constructed the SatUAV
image dataset for training and testing our matching models.

For the spoofing detection process, we first collect a reference
dataset by letting the target UAV take an aerial photograph at its
real geographic location from the air and send it to the ground
controller. After receiving the photo, the ground controller acquires
the relevant satellite imagery assembled in the UAV systems or
from public resources, i. e., Google Earth or NASA WorldWind. By
determining a threshold for the similarity between the real photos
taken by the UAV’s camera and the satellite images of a GPS position
that the UAV claimed, our system can detect GPS spoofing attacks
by identifying whether two images were taken at the same location.

This approach contains a number of challenges: First, images
taken by UAVs differ substantially in resolution, rotation, quality,
and other features (such as brightness and saturation) compared
with map imagery. Second, satellite imagery can be very different to
corresponding aerial photos due to external factors such as weather,
people, vehicles, light, and seasonal changes. Third, datasets with
paired images taken by UAVs are not readily available and creating
such a dataset (i. e., SatUAV) for training our deep learning models is
challenging, since in many countries security restrictions and drone
regulations limit drone operations. As an example, getting official
U.S. approval for extended drone operations that would be needed
for mapping activities would very likely require authorization from
the Federal Aviation Administration (FAA) as a prerequisite. Ac-
cordingly, laws and policies further exacerbate the difficulty of
obtaining raw airborne imagery.

In order to best tackle the first two challenges, we make use of
the power of deep learning methods. Specifically, Convolutional
Neural Networks (CNNs) are especially powerful for image recog-
nition, classification, and segmentation: As early as 2016, it was
reported that Artificial Intelligence (AI) had outperformed a human
in a top-5 error rate (3.57% vs. 5.1%) on ImageNet’s Large Scale
Visual Recognition Challenge (ILSVRC) [6]. Benefiting from rapid
development of GPU computing and CNN’s powerful learning and
feature extraction ability, the use of CNNs promises accurate yet
efficient detection. To the best of our knowledge, this paper is the
first attempt to detect GPS spoofing attacks on a single camera-
enabled UAV based on satellite vs. aerial pairs via deep-learning
methods.
Advantages. Compared with other conventional detection meth-
ods of GPS spoofing attacks, our countermeasure is a software-only
and non-invasive approach requiring no modifications of existing
GPS signals, GPS satellites, or GPS-capable receivers in practice.
Additionally, our approach does not introduce redundant receivers
or extra specific and expensive hardware for the analysis of the
GPS signal characteristics with acceptable power consumption. Due
to the development of AIoT (AI + IoT), some UAVs have already
been equipped with neural computing accelerator modules (e. g.,
the DJI Spark Drone has an Intel chip that enables deep learning

Figure 1: The system design of DeepSIM.

features [19]); such tendencies will potentially make our proposed
method even more efficient in the near future. Even a single UAV
is able to independently detect GPS spoofing attacks without co-
operation from other GPS-capable devices. Finally, our approach
can be run in two ways: (1) on the remote controller of a ground
station or (2) on the on-board computer (OBC) of a UAV.
Contributions. Our main contributions are as follows:
• Webuild SatUAV, a pioneering dataset of 967 satellite-aerial image
pairs. We use it to train our neural networks.

• We propose DeepSIM, a GPS spoofing-detection approach for
UAVs via satellite imagery matching. We propose four different
models based on CNN image-matching algorithms.

• We construct a prototype DeepSIM system and evaluate its per-
formance with the proposed four models. We further identify the
best two models for practical deployment based on experimental
results, and measure their power consumption.

• We describe the use of DeepSIM in two ways of operation: Deep-
SIM can either be run by a central controller after receiving the
imagery from the UAVs (on-ground) or can be executed directly
on the UAV itself (on-board). We demonstrate the feasibility and
accuracy of our concept by experiments using real-world data.

All source codes and datasets are available at our GitHub project
website1.

2 BACKGROUND AND PRELIMINARIES
In this section, we start by outlining basic knowledge of GPS, GPS
attacks, and countermeasures, followed by a description of Neural
Networks as context for the introduction to our proposed DeepSIM
technique.

2.1 Global Positioning System
The U.S. Global Positioning System (GPS) has been extensively used
in various scenarios in the last decades. In the core GPS system,
medium Earth orbit satellites continuously broadcast navigation
signals in six different orbital planes. Devices equipped with GPS-
capable receivers can compute their 3D position and local time
by measuring the time of arrival (ToA) of at least four satellite
signals. However, GPS does not provide integrity and authentic-
ity protection for civilian signals, making attacks on the system
possible.

2.1.1 Attacks on GPS. GPS signals can be divided into two cate-
gories: civilian signals and military signals. Compared to military
GPS signals that use a secret military code to improve the anti-
jamming and anti-spoofing properties, civilian GPS signals are
neither encrypted nor authenticated. That is to say, civilian GPS

1https://github.com/wangxiaodiu/DeepSim
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is inherently fragile and susceptible to GPS attacks (i. e., jamming
and spoofing attacks). The susceptibility of GPS to attacks has been
investigated since the year 2001 [39, 61, 62, 65].
GPS Jamming Attacks. GPS jamming attacks block GPS signals
or interfere with the target victims in order to keep them from
receiving legitimate GPS signals. One dangerous impact of GPS
jamming attacks is that they can prevent the systems that rely on
GPS signals from being able to “navigate” to their destinations.
Studies regarding jamming attacks can be found in [7, 15, 21].
GPS Spoofing Attacks. On the other hand, GPS spoofing attacks
attempt to fabricate similar and fake, but more powerful satellite
signals to deceive GPS-capable receivers. As a consequence, a vic-
tim will lock onto the spoofing signal rather than the legitimate
GPS signal. Several successful spoofing experiments were carried
out [16, 17, 23, 61, 64], indicating that such attacks are no longer the-
oretical assumptions. Coupled with the rise of programmable radio
platforms such as HackRF [43], the costs of commercial off-the-
shelf spoofing devices go down drastically, rendering GPS spoofing
attacks the de facto pressing threat.

2.1.2 Defenses against GPS Attacks. Given the lack of security
of civilian GPS signals, a large number of countermeasures were
proposed to mitigate the potential risks. These countermeasures
can be roughly classified into prevention and detection approaches.
GPS Attack Prevention. GPS attack prevention methods using
cryptographic techniques have been broadly presented and dis-
cussed [13, 29, 50, 66], which is similar to the solution employed
by military GPS signals. Nevertheless, such cryptographic methods
either demand to upgrade the existing GPS infrastructure [48] or
modify the GPS signal structure. Also, the proposed key distribution
mechanism is challenging. Hence, we conclude such countermea-
sures based on modifications of current GPS infrastructure includ-
ing receivers, emitters and associated GPS devices are unlikely to
be implemented in the near future. Moreover, according to [44], it
is impossible to avoid replaying attacks using merely encryption.
GPS Attack Detection. In comparison to prevention methods,
the GPS attack detection methods attract more attention from
academia and industry. Previously proposed countermeasures are
summarized in [22] and [46]. Further, these countermeasures can
be roughly categorized into the following three categories: (i) de-
tection at signal level, (ii) direction of arrival sensing, and (iii)
out-of-band techniques.
• Detection at Signal Level. GPS spoofing detection at signal
level tries to identify the abnormal signal based on the physical
features of signals. For example, spoofing checks based on physi-
cal signal waveform can be found in [1, 35, 46, 48]. The authors
of [25] used multiple co-located GPS receivers and leverage spa-
tial noise correlation to detect spoofing signals. Although there
is no modification on existing GPS signal structure, these tech-
niques do require modification of receivers and GPS-associated
devices or need special devices for the analysis of signal features.
In addition, such methods significantly increase the costs and
complexity of deployment of countermeasures.

• Detection at Direction of Arrival Sensing. Another class of
detection approaches utilize the direction of arrival sensing. For
example, Montgomery et al. [37] distinguished spoofing signals
by measuring the angle of arrival. A method based on range-only

information to detect GPS spoofing in platoons of vehicles was
introduced by Swaszek et al. [60]. Jansen et al. [24] proposed
Crowd-GPS-Sec to detect and localize GPS spoofing attacks on
moving airplanes.

• Detection Using Out-of-band Techniques. GPS spoofing at-
tacks can also be detected by comparing the GPS position informa-
tion with alternative sources of location. Examples of out-of-band
means for positioning that can be combined with GPS are visual
sensors, Inertial Measurement Units (IMUs), WiFi, altimeters,
enhanced long-range navigation (E-LORAN), and cellular-based
location [2, 42]. Our proposed approach falls into this category.
Methods with similar auxiliary equipment include [10, 33, 47, 68],
which will be discussed and compared with our method in Sec-
tion 7 (Related Work).

2.2 Deep Neural Networks
Deep learning models, especially Deep Neural Networks (DNN),
are currently the most popular machine learning technique, widely
used in various areas. Here, we shortly introduce the neural net-
works used in DeepSIM.
Residual Neural Networks: CNNs [32] have triggered a series
of successes in the domain of image classification. However, vanilla
CNNs are susceptible to vanishing gradients. At the moment, Resid-
ual Network (ResNet) [12] stands out from a variety of different
Neural Networks. ResNet, a milestone in the history of CNN images,
utilizes skip connection to propagate information over layers. By
doing this, the network is able to understand global features and
resolve the problem of degrading accuracy. Hence, ResNet enables
scientists and researchers to build deeper networks. It has been
proven in [12] that training this kind of network is much easier
than training vanilla deep convolutional neural networks. Taking
advantage of its powerful ability to extract features from images,
we utilize ResNet as part of the backbone network in our models.
SqueezeNet: SqueezeNet [18] released in 2016 is a small and com-
pact CNN architecture with fewer parameters and layers. It could
replace the ResNet for much less memory usage and faster inference
speed with compromised feature extraction ability. SqueezeNet has
less layers and uses smaller convolutional kernels, which leads to
much less parameters and faster inference speed. Thus, SqueezeNet
can be more easily run on devices with limited memory and com-
puting power such as a Raspberry Pi and a smartphone.
Siamese and Semi-Siamese Networks: Siamese Network [5] is
an artificial neural network originally designed to recognize human
faces. Generally, it contains two or more identical subnetworks,
having the same architecture with the sameweights and parameters.
Siamese Network performs well on the task of finding similarities
or relationships between two comparable input vectors, which
inspires us to use it to determine whether two images (i. e., the
satellite image and corresponding aerial photo) are paired.

Semi-Siamese Network [67] is a variant of the original Siamese
Network. Instead of fully weight-shared networks, Semi-Siamese
Network only shares weight between CNN backbones and then
distinguishes their outputs by a learnable Fully Connected Network
rather than Euclidean distance. Since only CNN backbones of the
whole network share weights, the model is called Semi-Siamese
Network.
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Figure 2: Areas where aerial photos are collected.

3 SATUAV DATASET CONSTRUCTION
To validate our approach that we will present in detail in Section 4,
we require a collection of aerial photography and satellite imagery.
Only after such a dataset is constructed, we can use it to train our
neural networks. Then the neural networks check whether an aerial
photo matches a satellite image or not. However, one current chal-
lenge is that there is no existing dataset of paired aerial photography
versus satellite imagery in the status quo, and thus we first have to
build such an image dataset by collecting appropriate images our-
selves. The dataset we constructed is named SatUAV that includes
a large amount of paired satellite imagery and aerial photography
from 13 cities or regions around the world, see Figure 2.

Images in our dataset are part of two categories: aerial photog-
raphy and satellite imagery. As of now, the total number of image
pairs in our dataset is 967 (appr. 12.08 Gigabyte).

3.1 Aerial Photography
To collect satisfactory aerial photos for training and testing, we
took a huge amount of new photos by ourselves using a real UAV,
namely a DJI Phantom 4 Advanced. We also leveraged existing
aerial photos from the senseFly website2 to enrich our dataset.

In total, we gathered 967 aerial photos. Among them are 605
realistic scene photos with a flight height of 120 m (393.7 ft) that
were captured using our ownUAV; 343 of these photoswere taken in
Suzhou, China, and 20 photoswere captured in Kunshan, China. The
rest were gathered in Weihai, Shennongjia and Wuxi respectively.
To test the generalization ability of our models, we additionally
collected 107 photos from 4 areas in the UK The camera used for
shooting is DJI FC6310. To get sufficient details of the ground, we
set the original pixel resolution to 5472 × 3078.

To make our dataset abundant and diverse, we obtained aerial
photos from different sources with disparate terrain features. To
this end, we included 362 photos available on the Internet from
the senseFly website. The collected photos can be divided into
four groups in terms of four different cities. Three of the cities
are in Switzerland and the fourth is Le Bourget Airport near Paris,
France. All of the aerial photos were taken by eBee drones. The pixel

2https://www.sensefly.com/education/datasets/

Figure 3: An example of central projection in our scenario.

resolutions from the Internet are 4608 × 3456 and 5472 × 3648. The
first data group with 160 photos was taken in a small Swiss village
of Merlischachen by a Canon IXUS 125 HS with a flight height of
162 m (531.4 ft). The second group with 40 photos was captured by
a Parrot Sequoia camera in outskirts of Renens, a municipality in
Switzerland. The flight height was set to 100 m (328.1 ft). The third
group with 113 photos came from Lausanne, Switzerland. These
photos were captured by a senseFly S.O.D.A. camera, and the flight
height is also about 100 m (328.1 ft). The last 49 images taken by
a Canon IXUS 125 HS camera display the aerial view of Paris Le
Bourget Airport at the height of 120 m (393.7 ft). As for the shooting
time period, the photos fromMerlischachenwere generated in April
2013; the second group of images was taken in October 2016; the
third image collection (Lausanne) was captured in January 2000; the
last airport aerial images were obtained in June 2013. Summaries
of specification regarding aerial photography are listed in Table 1.

3.2 Satellite Imagery
Satellite imagery, initially for military purpose, is now attainable
and freely available to the public. For our dataset we downloaded
satellite imagery from Google Earth3 containing a large collection
of Earth observation imagery. In spite of satellite imagery resolution
ranging from 15 meters of resolution to 15 centimeters, we used
the highest resolution we can get from Google Earth. The pixel
resolutions of the satellite imagery are set to three categories—3840
× 2160, 4800 × 3200, and 4800 × 3600, which match the ratio of
the aerial photography respectively. Satellite imagery regarding
Merlischachen was taken by a satellite in June 2015; spaceborne
photography corresponding to Renens was generated in March
2018; the third group of imagery with respect to Lausanne was
collected by satellite in March 2015 and August 2016 separately;
the last 30 airport images were generated in May 2018. The satellite
imagery associated with photos captured by our own UAV were
taken in July 2017 (Suzhou). And Shennongjia’s images were taken
in November 2017 and January 2018. All the satellite photos of
Kunshan Weihai and Wuxi were taken in 2018. Moreover, all the
UK data were captured from 2018 to 2019. Table 2 gives an overview
of the specifications regarding the used sets of satellite imagery.

3https://www.google.com/earth/

https://www.sensefly.com/education/datasets/
https://www.google.com/earth/


DeepSIM: GPS Spoofing Detection on UAVs using Satellite Imagery Matching ACSAC 2020, December 7–11, 2020, Austin, USA

Table 1: Specification summary of aerial photography.
Place Pixel resolution Ratio #Images Flight height Shooting time Scenario features Camera Usage

Suzhou 5472×3078 16:9 343 120 m 9/2018–3/2019 lakeside city DJI training&test
Kunshan 5472×3078 16:9 20 120 m 10/2018 heritage town DJI training&test
Weihai 5472×3078 16:9 57 120 m 10–11/2018 coastal city DJI training&test
Shennongjia 5472×3078 16:9 9 120 m 12/2018 mountain forests DJI training&test
Wuxi 5472×3078 16:9 69 120 m 3/2019 downtown DJI training&test
Birmingham 5472×3078 16:9 37 120 m 4/2019 city park DJI test-only
Coventry 5472×3078 16:9 15 120 m 5/2019 university campus DJI test-only
Liverpool 5472×3078 16:9 41 120 m 4/2019 urban&park DJI test-only
Peak District 5472×3078 16:9 14 120 m 5/2019 national park DJI test-only
Merlischachen 4608×3456 4:3 160 162 m 4/2013 lakeside village Canon IXUS training&test
Renens 4608×3456 4:3 40 162 m 10/2016 cropland Sequoia training&test
Lausanne 5472×3648 3:2 113 100 m 1/2000 industrial zone S.O.D.A. training&test
Le Bourget Airport 4608×3456 4:3 49 120 m 6/2013 airport Canon IXUS training&test

Table 2: Specification summary of satellite imagery.

Place Pixel resolution Ratio #Images Shooting time

Suzhou 3840×2160 16:9 343 7/2017
Kunshan 3840×2160 16:9 20 3/2018
Weihai 3840×2160 16:9 57 4-5/2018
Shennongjia 3840×2160 16:9 69 11/2017, 1/2018
Wuxi 3840×2160 16:9 9 4/2018
Birmingham 3840×2160 16:9 37 5/2019
Coventry 3840×2160 16:9 15 5/2019
Liverpool 3840×2160 16:9 41 3/2018
Peak District 3840×2160 16:9 14 6/2018
Merlischachen 4800×3600 4:3 160 6/2015
Renens 4800×3600 4:3 40 3/2018
Lausanne 4800×3200 3:2 113 3/2015, 8/2016
Le Bourget Airport 4800×3600 4:3 49 6/2013

3.3 Image Pairing Calibration
To create the image pairs, our basic principle is to keep the coverage
and location of the satellite imagery consistent with those of the
aerial photography.

In general, UAVs collect lots of data during flight missions, in-
cluding image data, position and orientation system (POS) data and
metadata. Thus, we decided to adapt a central projection method
to calculate location and coverage from POS data included in aerial
photos. By doing this, the four vertex coordinates of the projection
rectangle on the ground (see Fig. 3) can be determined. Then, we
use these coordinates (geographic data) to obtain corresponding
satellite images from Google Earth. Finally, we use the images to
train our neural network models to recognize spoofing attacks.

We next introduce central projection, which is the projection from
one plane onto another plane from a central point (also known as a
projection center); however, the projection center is not on either
projection plane. In our case, a focal point inside the physical camera
is the projection center. Both aerial photos and satellite imagery
can be considered as projections from this point. To simplify the
model, suppose that the plane (i. e., the image sensor plane) where
aerial photos lie is parallel to the plane of the satellite imagery on
the ground.

The vertical slices of aerial photography projection on the image
sensor plane and ground plane and the covered area on the ground
are shown in Figures 4a–4c. Notations used in these figures and in
the description of our algorithm are summarized in Table 3.

Combining central projection with Figure 4a, we can deduce the
camera’s horizontal α and vertical β angle of views, where F is
the effective focal length, andW0 and H0 represent the width and
height of the film, respectively:{

α = arctan W0
2F

β = arctan H0
2F .

(1)

In fact, the real coordinate is affected by a UAV’s yaw ϕ, pitch θ
and roll ψ degrees. Therefore, the projection direction onto the
ground is not perfectly perpendicular (i. e., the red rectangle in
Figure 4c). In practice, there is a slight shift (i. e., the black rectangle
in Figure 4c) due to some factors such as wind and mechanical
errors. Thus, we need to introduce some amendment. Considering
Figure 4b, Figure 4c and UAV’s pitch θ and rollψ degrees, we can
deduce the following results:

xa = (L − L0) tanθ sinϕ
ya = (L − L0) tanθ cosϕ
xb = (L − L0) tanψ cosϕ
yb = (L − L0) tanψ sinϕ
x0 = x + xa + xb

y0 = y + ya − yb .

(2)

Coupling the central projection and Figure 4b, we have derived
the following equations from Equations (1) and (2):

W1 = (L − L0) tan(α −ψ )

W2 = (L − L0) tan(α +ψ )
H1 = (L − L0) tan(β − θ )

H2 = (L − L0) tan(β + θ ),

(3)

Table 3: Summary of notations
Term Definition Term Definition

F Camera’s focal length W0 Width of the aerial photo
L Flight height above sea level H0 Height of the aerial photo
L0 Altitude of geographic location (x0, y0) LAT/LONG of central point
ϕ Yaw degree of the UAV (x, y) LAT/LONG of shooting point
θ Pitch degree of the UAV (xa, ya ) Amendment of pitch value
ψ Roll degree of the UAV (xb , yb ) Amendment of roll value
α Camera’s horizontal angle of view (xi , yi ) Coordinate of corresponding
β Camera’s vertical angle of view corner point of the projected

rectangle image, i=1,2,3,4
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(a) (b) (c)
Figure 4: (a) Vertical slices of aerial photography projection on the image sensor plane. S is the projection center. The red
areas indicate the projection rays are always perpendicular to the image sensor plane. (b) Vertical slices of aerial photography
projection on the ground. S is the projection center. The black areas indicate the actual projection with allowable tolerance,
and red areas indicate the ideal (perfectly perpendicular) projection. (c) Vertical slices of aerial photography projection on
the ground. S is the projection center. The black areas indicate the actual projection with allowable tolerance, and red areas
indicate the ideal (perfectly perpendicular) projection.

whereW1 andW2 denote the shifted distances affected by the roll
ψ , while H1 and H2 are the shifted distances affected the pitch θ
(indicated in the Figure 4b). Then, we can obtain:



x1 = x + H2 sinϕ −W1 cosϕ
y1 = y + H2 cosϕ +W1 sinϕ
x2 = x + H2 sinϕ +W2 cosϕ
y2 = y + H2 cosϕ −W2 sinϕ
x3 = x − H1 sinϕ +W2 cosϕ
y3 = y − H1 cosϕ −W2 sinϕ
x4 = x − H1 sinϕ −W1 cosϕ
y4 = y − H1 cosϕ +W1 sinϕ .

(4)

The rectangle area on the ground shot by the drone can be
calculated through the above equations. It is worth noting that we
merely use an approximation method to reduce the complexity.
There are two factors that can affect the accuracy of computations.
First, when taking pictures, the drone lens needs to shoot photos
as downwards (vertically) as possible, and thus the actual angle of
the camera should be restricted to close to 90 degrees. Otherwise,
the error of the coverage of ground projection becomes very large.
Second, ideal projection ground is flat terrain. Incline landscape
such as hills will introduce deviation.

Figure 5 shows typical examples of pairs of aerial photography
versus satellite imagery from our dataset at different places. Accord-
ing to the above equations, we can conclude that with the increase
of flying height, the photos taken by UAVs can cover larger surface
areas, thus making the aerial photos contain more visual features,
which suggests that photos captured in different places can be more
easily distinguished from one another. However, due to rules and
inherent limitations of UAVs, the height cannot be infinite, and
regulations vary from country to country. For example, in the US,
aviation authorities recommend flying below 400 feet / 121 meters
above ground level to avoid possible collision with manned aircraft
such as airplanes or helicopters.

4 SYSTEM DESIGN OF DEEPSIM
DeepSIM is the integration of UAVs, a ground-based UAV controller
(or ground station), a spoofing indicator and communications be-
tween UAVs and ground station. To simplify the model, we assume
that the camera is mounted directly under the UAV, with the cam-
era’s movement being consistent with the UAV’s movement.
Underlying Concept. The underlying concept of our proposed
GPS spoofing-detection approach for UAVs is inspired by natural
features in the real world. Our natural environment has many
random features and unpredictable factors, which are very hard
for attackers to simulate and manipulate. We design this approach
based upon the difficulty of forgeability of the visual features in
nature. Such features include, but are not restricted to, roads, rivers,
mountains, streets, landscapes, skyscrapers, landmarks, etc.

4.1 System Overview
Each part of the DeepSIM system (Fig. 1) works as follows: 1) The
UAV processes GPS signals from the satellites by a GPS-capable
receiver to determine its own position and it takes aerial photos
of the ground using a camera. 2) The UAV controller provides
an operation and monitoring platform for the UAV and is also
responsible for running models to detect spoofing attacks (unless
this is run on the UAV directly). 3) Communications refer to the
channel for remote control and exchange of video and other data
between the UAV and the UAV control center. 4) The spoofing
indicator will alert administrators if spoofing attacks are detected.

4.2 Attacker Model
We consider an attacker emitting fake GPS signals to UAVs by
injecting, modifying, replaying, or delaying GPS messages. As a
result, the target UAV will compute a wrong geolocation and send
incorrect location data back to the ground station. This may result
in the UAV being displayed at a manipulated position in the map
on the remote control panel and it may result in misleading the
UAV to take a wrong itinerary.

Moreover, the attacker may block or jam the communication
channel between the UAV and the ground station by active signal
transmissions on the frequency channel used for communication.
This would cause the UAV to lose contact with the ground station.
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Figure 5: Examples of paired images from our dataset.

While this goes beyond GPS spoofing, we propose an On-board
Model of DeepSIM that does not rely on an active and available
communication channel between the UAV and the ground station.

4.3 Image Matching for Spoofing Detection
The design of DeepSIM contains two types of detection for GPS
spoofing attacks: on-demand and periodical detection. Once the
victim UAV is spoofed from its original geolocation to another des-
tination specified by the attacker, the differences between real-time
aerial photos and satellite imagery of the spoofed destination are
generally obvious. Our system can quickly identify such inconsis-
tencies and then raise warning notifications to administrators.
On-demand Detection. On-demand detection is used for UAVs
in sensitive areas where the possibility of GPS spoofing attacks is
high, such as battlefronts and protected airspace. The on-demand
GPS spoofing detection works as follows: (1) A UAV controller
sends a spoofing-detection command to a target UAV through the
wireless channel. (2) The UAV adjusts trimming (trimming is often
used to maintain straight, level flight and stabilize the drone) and
takes environmental photos. (3) The UAV sends aerial photos back
to the central controller. (4) The controller receives the photo from
the UAV and obtains the corresponding satellite image using the
method described in Section 3.3. (5) The controller runs algorithms
to compare the aerial photos with the satellite imagery, and then
determines whether the image pairs match each other or not. (6) The
controller raises an alarm if the two images are unpaired.
Periodical Detection. Periodical detection is applied when UAVs
work in low-risk areas. The controller does not need to send spoofing-
detection commands to the target UAV while the UAV itself will
send back the aerial photos periodically (e. g., every 30 seconds)
to the controller for detecting spoofing attacks. Besides, UAVs can
perform detection by itself once the communication channel is com-
promised by attackers. Periodical detection does not put an extra
burden on the UAVs, and it is more friendly to battery-powered and
computationally limited drones.

4.4 Deep Learning Model
Since there are two input vectors, i. e., satellite images and aerial
photos, it is natural to use neural networks with two branches.
In addition, as satellite images and aerial images are very similar,
sharing weight between two branches is a sensible choice. Based
on such intuition, we propose four different deep-learning based
models: Distance Threshold, Siamese ResNet, Semi-Siamese Network,
and Siamese SqueezeNet as candidates to find appropriate neural
networks to detect GPS spoofing attacks for different scenarios. For
the sake of simplicity, we named them Model 1, Model 2, Model 3

and Model 4 in turn. All proposed models have two weight-sharing
branches and compare I1, the image taken by the UAV camera, and
I2, the image retrieved from the satellite image databases like Google
Earth. Algorithm 1 describes the overall idea of our GPS spoofing-
detection. Finally, we decide to adopt Siamese ResNet for on-ground
detection and Siamese SqueezeNet for on-board detection based on
experimental results described in Table 9. Here, we only give the
description of the models we adopt for on-ground detection and on-
broad detection. More details regarding the other two models and
comparison results and reasons can be found in the Appendix A.

Algorithm 1: Overall Algorithm of Four Models
Input: I1, image taken by a UAV, G, geographical data

obtained by the UAV’s GPS-capable receiver
Output:Whether the UAV is spoofed or not
Initialization: The modelM ;
Retrieve satellite image I2 according to G;
R = M(I1, I2);
if R = 0 then

return ’Not spoofed’;
end
return ’Spoofed’;

4.4.1 On-ground Detection Model: Siamese ResNet. On-ground de-
tection utilizes Siamese Network, a prevailing two-branch image
pairing model, to perform spoofing detection. The structure of the
Neural Network model for the detection of GPS spoofing attacks is
shown in Figure 6. In our implementation, the trainable network
is composed of CNN layers and Fully Connected layers, in which
the CNN layers are initialized by a pretrained ResNet to speed up
training with a relatively small volume of training data. Since it
consists of Siamese Network and ResNet, we call it Siamese ResNet.

During training, the Siamese Network tries to learn the features
so that if two images are paired, their Euclidean distance is small.
This goal is achieved by optimizing its loss function, Contrastive
Loss [8], which is shown below:

L =
1
2
{(1 − y) × d2 + y ×max(margin − d, 0)2}, (5)

where d denotes the Euclidean distance of two feature maps output
from the network, y the label if two images are from the same
location, y = 0, and margin a hyperparameter set before training.

4.4.2 On-board Detection Model: Siamese SqueezeNet. As men-
tioned earlier, ResNet is introduced as the backbone for its power-
ful feature extraction ability in On-ground Model. However, On-
ground Model requires more than 2 GB memory to run. As a matter
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Figure 6: Neural Network Structure. The black arrows indi-
cate data flow, the green section is the trainable model. The
whole network shares weight. Our On-ground Model uses
ResNet as the backbone, while our On-board Model uses
SqueezeNet as the backbone.

of fact most UAV on-board computers do not have that much mem-
ory. Thus, we adopted SqueezeNet, a lightweight neural network,
aiming to enable the UAV to detect GPS spoofing with on-board
computation. The major difference of this model and the models
mentioned above is the backbone of the model, as shown in Figure 6.
Therefore, Siamese Network with SqueezeNet runs about 6 times
faster than Siamese Network with ResNet in theory.

In order to prove that this model can be run on a UAV, the related
experiments are all conducted on a Raspberry Pi SOC with similar
limited computational resources as a UAV computation board. This
model can be run on-board on UAVs to enable the UAV to detect
GPS spoofing independently when attackers also deploy jamming
to disrupt the communication between UAV and ground controller.

5 EXPERIMENTS AND EVALUATION
To demonstrate the effectiveness and efficiency of the proposed
methods, all models were tested on the SatUAV dataset.

5.1 Experimental Setup
Hardware Environments. Both On-groundModel and On-board
Model were trained and evaluated on a single NVIDIA® Tesla® V100
GPU with 16GB GPU memory. The CPUs on this V100 GPU server
are two Intel® Xeon® E5-2683 v3 @ 2.00GHz CPUs. Besides, the
On-board Model is also tested on a Raspberry Pi 3B+ whose CPU
is Cortex-A53 @ 1.4GHz and memory is 1GB.
Software Environments. The GPU server runs a 64-bit Linux
system. Raspberry Pi runs a 32-bit Linux system for ARM. All the
experiments are implemented in Python 3 with Pytorch [45] as the
deep learning framework. For the V100 GPU server, CUDA and
cuDNN [4] are installed to accelerate the Neural Networks training
and inference process.

5.2 Implementation Details
Dataset. Prior to SatUAV, no dataset of paired aerial photos versus
satellite imagery existed. As a response, we constructed SatUAV
and leveraged all the 967 SatUAV image pairs in our experiments.
Preprocessing.To evaluate the proposedOn-ground andOn-board
models, we divided the whole dataset into two parts: the training
data and test data. 80% of the dataset (688 pairs) was randomly
chosen to become the training data, and the rest of them (172 pairs)

Figure 7: Images after data augmentation.

became the test data. We will report our results on both training
data and test data. All images were resized to 960×720 (4:3) to fit into
memory before being fed into neural networks. Higher resolution,
of course, contains more details that could be helpful to the neural
networks, but higher resolution also leads to higher memory usage
and smaller batch size. We compared several image resolutions and
decided to choose 960×720 as input.
Data Augmentation. In the real world, a variety of conditions can
be encountered, such as different rotation, grayscale, croppings,
and blurred images due to bad weather conditions. At the same
time, we created a dataset of image pairs that cover only a lim-
ited set of conditions and cities. In order to enrich our dataset and
make the models robuster, we augment the data by eight differ-
ent augmentation techniques that simulate numerous variations of
landscape conditions: rotation, graying, cropping, blurring, dark-
ening, brightening and several weather conditions like clouds and
fog. The image augmentations are generated with the use of the
Python computer vision library OpenCV [14] and the Python image
augmentation library Imgaug [26]. We choose parameters deter-
mining the strength and amount of rotation, cropping, and blurring
for different condition simulations. Figure 7 shows the images after
data augmentation. By adding the augmented images, we obtain
7,740 image pairs as input for the training of our models.
Negative Samples Mining. In all the experiments, paired satel-
lite images and aerial photos were considered as positive samples
and labeled as 0. However, there were only positive samples (i. e.,
paired images) in the SatUAV dataset, which required a negative
sample mining process to generate enough negative samples for
training and testing. Thus, we used random unpaired images from
the dataset as negative samples. To ensure there is a similar number
of positive and negative samples, we employ a random picking
trick, described in Algorithm 2. To fairly compare the result, the
number of generated negative samples was the same as the number
of positive samples during testing.
Network Architecture. A pretrained ResNet-34 (without the last
Fully Connected layer) played the role as the backbone CNN net-
work in On-groundModel. The final pooling layer of this pretrained
ResNet-34 is an average pooling layer whose kernel size is 7 and
stride is 1, the output feature map size is 24 × 17 × 512. As for On-
board Model, a SqueezeNet v1.1 without its last Fully Connected
layer played the role as the backbone CNN network, and the output
feature map size is 59 × 44 × 512.
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Algorithm 2: Random Picking. This algorithm is invoked
when selecting a pair of images as the input in each training
or testing iteration.
Input: i , satellite image array A, aerial image array B
Output: The i-th image pair, and its label l
s = size(A);
a = A[i];
l = random.pick([1,0]);
if l = 1 then

shi f t = random.pick([1, 2, ..., s − 1]) ;
i = (i + shi f t)%s;

end
b = B[i];
return a,b, l ;

Table 4: Layers after backbone of On-ground Model and On-
board Model. FC(N ) indicates Fully Connected layer with N
output nodes. BN indicates Batch Normalization [20]. DO(p)
indicates Dropout with p as possibility [56].Conv_1×1(N ) in-
dicates 1 by 1 convolutional kernel with N output channels.

Model Layers after backbone

On-ground FC(2048),
BN, ReLU

FC(512),
DO(0.2), PReLU

FC(8)

On-board Conv_1x1(16),
FC(512),
BN, ReLU

FC(64),
DO(0.2), PReLU

FC(8)

The layers attached after backbones in On-ground Model and
On-board Model are described in Table 4. As shown in the table,
a 1-by-1 convolutional layer with 16 output channels is applied
right after the SqueezeNet backbone for On-board Model. This
convolutional layer is introduced to reduce dimensionality of the
feature map so that the computational load can be further reduced
for on-board execution.
Transfer Learning. In bothmodels, a machine learning technique
called Transfer Learning was leveraged. It helped to accelerate the
experiments, shorten training time, and make our experiments
feasible using a relatively small dataset. Transfer Learning reuses
trained models by applying it to new models or fine-tuning them
to fit into different but related tasks. There are mainly two kinds
of transfer learning for CNN. One uses pretrained CNN as fixed
feature extractor, the other is to fine-tune the pretrained CNN. On-
ground Model and On-board Model mainly apply the second type
of transfer learning. We have also explored the first type Transfer
Learning in Model 3, which will be elaborated in the Appendix.

For On-ground Model, a pretrained ResNet-34 was introduced as
the backbone and its weights were used to initialize the backbone,
whose parameters or weights were updated as the training went
on. Similarly, a pretrained SqueezeNet v1.1 was introduced to On-
board Model as its backbone and its weights were used to initialize
the backbone, whose parameters or weights were updated as the
training went on. As Figure 6 shows, the backbones and the layers
after backbones were trained together in both models.

(a) ROC curves and AUC scores. (b) Training loss.

Figure 8: ROC curves and training loss of both models.

Optimization. The loss functions of On-ground Model and On-
board Model are both Contrastive Loss as described in Equation 5.
Stochastic Gradient Descent with momentum [58] was applied
to optimize the models and update the trainable parameters. The
learning rate was set to decay by 0.1 every step epochs, where step
is a hyperparameter. We kept tracking and updating the model
having the highest accuracy during the whole training process.
The final experimental results were based on the saved model with
highest accuracy rather than that after the training was completed.
Hyperparameters. We conducted different experiments to ex-
plore the optimal hyperparameters for these two models. The final
results are reported here. Both models used 3 × 10−4 as the initial
learning rate, step = 10 and momentum = 0.9. They are trained
for 100 epochs on original data and 50 epochs on augmented data.
Here, an epoch means one full training cycle through the entire
training dataset while training a machine learning model. It takes
much longer to train on the augmented data so we reduced the
number of epochs for training on augmented data. Margin as in
Contrastive Loss is set to 4. The batch sizes are 4 for both models.

5.3 Experimental Results
Training Process: Figure 8 demonstrates the loss change during
the training process of both models.
Performance: Experiments for two models were conducted on
the whole SatUAV dataset. We use the standard F1-score as a main
measure to evaluate model performance:

F1 = 2 ×
precision × recall
precision + recall

. (6)

We refer to Table 5 for the numeric experimental results includ-
ing accuracy, precision, recall and the F1 score for each model.
Figure 8 (a) shows their Receiver Operating Characteristic (ROC)
curves and their Area Under the Curve (AUC) scores. We further
tested both models using data augmentation technique. The results
are shown in Table 6. We can see that both accuracy and F1 Score
benefit from this technique.
TimeComplexity and Power Consumption:On-groundModel
was trained on our GPU server, for about 20 minutes per epoch on
augmented data and for about 2.4 min per epoch on original data.
On-board Model was also trained on the GPU server, for about 10.2
minutes per epoch on augmented data and for about 1.5 minutes
on original data. For testing on our GPU server, it merely took less
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Table 5: Experimental results of the On-ground Model and On-board Model, trained without data augmentation.
Model Dataset Threshold Accuracy Precision Recall Error Rate F1 Score Memory Usage Disk Usage Power Consumption

On-ground SatUAV-Training 2 0.869 0.837 0.911 0.131 0.873 2.9 GB (CPU) 1.7 GB N/A(Model 2) SatUAV-Test 2 0.895 0.855 0.954 0.105 0.902 4.5 GB (GPU)
On-board SatUAV-Training 2 0.849 0.782 0.971 0.151 0.866 285 MB (CPU) 85 MB 1.1 Watts(Model 4) SatUAV-Test 2 0.826 0.770 0.917 0.174 0.837

Table 6: Results after data augmentation, using SatUAV-Test
for testing and 2 as threshold. With data augmentation, not
only both accuracy and F1 score of twomodels increased, but
also the error rate for On-groundModel reduced 50% and the
error rate for On-board Model lowered 37% respectively.
Model Accuracy Precision Recall Error F1 Score

On-ground 0.948 0.930 0.979 0.052 0.954
On-board 0.890 0.871 0.936 0.110 0.903

than 0.1 sec/pair to predict for both models. Besides, the On-board
Model took about 10.5 sec/pair for testing on a Raspberry Pi 3B+.
The average running time of all models is summarized in Table 7.

For the On-boardModel, power consumption is also an important
factor since overburden may affect the mission time for a UAV with
limited battery capacity. We use a USB tester to measure the power
of Raspberry Pi. The power consumption with/without running
the model are 3.23 watts and 2.13 watts respectively. Given that the
running time is short, see Table 7, and GPS spoofing detection is
not always being performed, it does not reduce battery life largely.
Error Tolerance: In order to further study the error tolerance
of our method, we generated 5 groups of satellite images which
are shifted from the original position towards the four cardinal
directions — north, south, east, and west. The deviations are set
to 15, 30 and 45 meters respectively, since the standard accuracy
of GPS is about 15 meters (49 feet) [36]. In total, 60 images were
fed into the On-ground and On-board Models. The results are also
shown in Table 7. Larger value means higher probability of spoofing
attacks. We can find that as the deviation grows, DeepSIM is also
gradually likely to think such deviation is due to GPS attacks, which
is consistent with the common intuition as well.
Generalization Ability: The ability to generalize our technique
to non-trained geographical areas is important since it is not always
possible to train the models on data from the target areas. To study
the generalization ability of the proposed models, we collected
extra test data from four places in the UK: Birmingham, Coventry,
Liverpool, and Peak District. Since our models are trained on non-
UK data, we can evaluate the generalization ability based on their
accuracy for the UK data. On the 107 pairs of the UK-images, the
accuracy for the On-ground Model is 0.888 (F1 score 0.889), for the
On-board model 0.841 (F1 score 0.872). Comparing these results to
Table 5, we conclude that both On-ground and On-board Models
have good generalization ability for unfamiliar places.

6 DISCUSSION AND LIMITATIONS
6.1 Pros and Cons of the Models
Currently a UAV with a visual sensor is the standard equipment.
All models just need photos to detect GPS spoofing attacks. Their

Table 7: Average running time (left) and attack probabil-
ity by different deviations (right) of the On-ground and On-
board models. The results indicate the estimated probabili-
ties of spoofing attacks become higher as the deviations in-
crease.
Model Time (sec/pair) Hardware 15m 30m 45m

On-ground < 0.1 Ground GPU server 0 0.15 0.20
On-board 10.48 Raspberry Pi 0 0.05 0.15

thresholds are adjustable, and they can easily be combined with
other detectionmethods like time-series analysis, detection at signal
level, etc.

The major limitation is caused by the nature of our methods.
They highly rely on the diversity of visual features, which makes
the models perform badly on landscapes like desert, oceans, woods
whose features are monotonous and hard to distinguish.

In addition, natural phenomena can degrade the accuracy. For
instance, standard cameras can hardly capture objects in the dark
night; fog can blur the view of the landscape; strong light can cause
destructive interference in image formation. In such cases, our
methods can still be effective if the UAV is equipped with special
devices, e. g., a night-vision camera, or uses selected state-of-the-art
techniques, e. g., haze removal using dark channel prior [11].

Even though our best model indicates approximately a 95% ac-
curacy, there is a chance that FP (False Positive) and FN (False
Negative) predictions will happen. The following methods can be
used to reduce the system error:
1) Analyse the result as time sequence. We could detect attacks
every 5 seconds. Since it’s unlikely for attackers to attack victims in
a short period cycle (e. g., every 10 seconds), if the system predicts
there is only one or two attacks per minute, it is highly possible
they are false alarms. In the real world, given that the possibility of
GPS attacks is low, DeepSIM may raise alarms after inconsistencies
are detected three times in succession. Thus, the false positive rate
also can be reduced down to acceptable levels in practice.
2) Raise an exception to the operators. When the system de-
tects attacks, it raises a spoofing alarm, and shows the aerial photo
and the satellite image to the UAV operator, let the operator make
final decision whether there is an attack or not.
3) Analyse the sensors fusion results. With the IMU and other
sensors as an auxiliary, we can analyse the sensor fusion results
and do cross-validation to improve the accuracy and avoid errors.

6.2 Attacks on our Approach
Attacks on the Communication Channel. Our method pro-
vides alternative ways to detect GPS spoofing attacks, which is
completely different from traditional methods. Generally, an at-
tacker merely equipped with GPS spoofing antenna cannot attack
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our communication channel for aerial photography transmitting,
since our approach utilizes out-of-band technique rather than GPS
signals. To both carry out a GPS spoofing attack and compromise
the communication channel at the same time will be more difficult
than GPS-only attacks. Up to now, there are no reported incidents
regarding such attacks, also called Video Replay Attack [28], but
it should be noted. In this case, an attacker can feed the control
unit with recorded video. One countermeasure to secure communi-
cation stream is to use cryptographic techniques. Compared with
GPS channel, it is relatively easy to deploy. In addition, to imple-
ment attacks on communication channel, it requires the attacker
to be near the victims. As a result, it is much easier to find the at-
tacker compared with GPS-only attackers who can be very far from
the victims, usually tens of kilometers away. Even if the attackers
managed to implement attacks on communication channels, our
On-board Model could be launched to detect spoofing without the
assistance of remote controller.
Attacks onOurModels. There are two kinds of attacks on Neural
Networks: In white box attacks, the attackers have the knowledge
of neural network weights and parameters; in black box attacks, the
attackers only have the knowledge of the model or no knowledge
at all. Depending on the goal, the attacks can be classified into two
categories: non-targeted attacks try to make the neural network
misclassify, targeted attacks try to make the neural network classify
to a certain class. To attack DeepSIM, the attackers need to cover the
landscape [30]. Without the knowledge of network parameters, it
is very hard to achieve such an attack. Even if the attackers are able
to conduct a White Box Attack, they will need to change large areas
of landscapes, which is considerably difficult. Moreover, attackers
cannot guarantee that the modified camouflages must be captured
by UAVs in proper position to manipulate our models.
Attacks on Landscape. Another possible attack to our approach
is the landscape attack. Theoretically, our approach is vulnerable
to such attacks when a UAV is still hovering just above featureless
areas, such as ocean, desert, prairie. However, UAVs are often used
in scenarios like urban centers, rural areas, industrial districts, etc.
in practice. These scenarios have plenty of topographic features
(e. g., skyscrapers, landmarks, rivers, roads, etc.). Our approach
is meaningful and feasible in most cases, and it is proved by our
experiments. Another conceptual way is to change the landscape or
set camouflage that can affect the collected photos. However, for an
attacker, this method is unfeasible to carry out in reality. Even if an
attacker can modify landscape on earth, the coverage is limited to
a narrow zone. Once the victim UAV flies across such camouflaged
range, attacks on landscape will become invalid.

6.3 Future Usage of the Database
SatUAV has been made open through our project website (we ob-
tained consent from SenseFly). Researchers in security, computer
vision, machine learning can benefit from our open dataset. For
computer vision researchers, this dataset can be leveraged in do-
main adaptation, image matching and retrieval, adversarial attacks
on vision models and so on. For GPS security, SatUAV and DeepSIM
set up a benchmark and baseline for GPS spoofing detection via
computer vision methods. Security researchers can develop insight-
ful findings using SatUAV, like secure vision-based localization.

6.4 Post-Detection Countermeasures
We have assumed that the GPS signals sent by the attacker are
transmitted wirelessly and that the UAV computes incorrect geolo-
cations due to the fake GPS signals. Once GPS spoofing attacks are
detected, there are mainly three strategies:
1) Fly out of the GPS spoofing area. The spoofed UAV should
keep on going towards one direction. Continuously it checkswhether
the GPS location is spoofed or not until it reaches an area where
the spoofing warning is lifted.
2) Land in the current position. The target UAV can use the ma-
ture vision-based landing technique [3, 31]. However, if the landing
zone is dangerous (e. g., lake, ocean and crater), then it needs to
find somewhere safe to land or just hover at a low height until the
end of the spoofing attack.
3) Return to home automatically. This is a promising solution,
attracting lots of research. Currently, there are two mainstream
methods: one is based on GPS information, and the other is based on
image matching. However, when GPS signal is spoofed or jammed,
GPS-based methods are unavailable. Recently, a post-mission au-
tonomous return method which works well without needs of GPS
signal was proposed by Nguyen et al. [38].

7 RELATEDWORK
In recent years, research regarding security of UAVs has sparked
large interest with the popularity of drones and security concerns
about UAVs [9, 27, 28, 54]. Significant efforts have been put into de-
veloping GPS spoofing-detection techniques. According to the latest
literature review in [28], one of the pressing challenges presented
by UAVs is the GPS spoofing attack, which is also the most common
attack on UAVs. However, the mainstream approaches are limited
to analyzing the GPS signal itself. Among those traditional counter-
measures, some imposemodifications in the structure of GPS signals
or infrastructures by using cryptographic techniques [13, 29, 41, 66],
some introduce additional specific equipment to analyze phys-
ical features of signals (i. e., signal powers, waveforms and fre-
quency) [1, 46], and some need multiple receivers [24, 37] or devices
to collaborate with each other [10]. As a consequence, these meth-
ods increase the cost of deploying anti-spoofing due to expensive
equipment, computational complexity, and additional devices.

With these aforementioned concerns in mind, it becomes nec-
essary to investigate new approaches for detecting GPS spoofing
attacks specifically for the UAV context. Recently, with the remark-
able progress of Computer Vision and Artificial Intelligence, some
researchers have considered using vision-based techniques as as-
sistance to detect GPS spoofing attacks. Such out-of-band methods
have already been proved effective and successful [10, 33, 47, 68].

Liu et al. presented a UAV positioning method using priori
remote-sensing information and SIFT-based (Scale Invariant Fea-
ture Transform) visual features [33]. The SIFT-based visual features
of historical remote-sensing images were generated and stored on
UAVs, so that when the UAVs are in the air, visual features of the
environment can be compared with the historical remote-sensing
image features to rectify the positioning. The authors suggested
that CNN should be further studied, which is one of the contribu-
tions in DeepSIM, where our models are CNN deep learning neural
networks for GPS spoofing detection. CNN-based models entitle
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Table 8: Comparison of countermeasures against GPS spoofing attacks regarding deployment considerations. Difficulty refers
to the overall evaluation of deploying corresponding countermeasures, and cost includes monetary, manpower and time cost.

Redundant Specific Compatibility with
Countermeasure Difficulty Cost receivers HW existing infrastructure Automation

cryptographic schemes [13, 29, 41, 66] High High No No Low Yes
detection at signal level [1, 25, 35, 46, 48, 52, 57] Medium High Partial Yes Medium Yes
detection at direction of arrival sensing [24, 37, 59, 60] High Medium Yes No Medium Yes
existing out-of-band techniques, e. g., IMU [10, 33, 42, 47] Medium Medium No Yes High Yes
human-assisted method [68] Medium High No No High No
DeepSIM [this paper] Medium Low No No High Yes

DeepSIM to the better feature extraction and enable the system to
evolve with the growth of data. Moreover, for DeepSIM, all compu-
tation tasks can be finished on the controller side, thus significantly
improving the UAVs’ battery life.

He et al. proposed a method to detect GPS spoofing based on
the monocular camera and IMU sensor of a UAV through infor-
mation fusion[10]. Essentially, the method is an improvement of
IMU based GPS spoofing-detection methods, which leveraged ve-
locity measured by IMU to verify the GNSS data. Specifically, the
Lucas-Kanade (LK) method [34] was employed to estimate the ve-
locity of UAV and then to compare with the velocity measured by
IMU so that cumulative error in IMU measurement can be reduced.
This method also requires on-board computation comparing with
DeepSIM; however it could not eliminate systematically cumulative
error due to its intrinsic shortcomings. Another similar method
can be found in [47]. DeepSIM’s simpler approach is to only use a
camera in contrast to using both a camera and an IMU.

Zhu et al. proposed a collaborative approach for a single opera-
tor of multiple-UAV supervisory control systems using human-
autonomy, in which human geolocation is used to help detect
possible UAV cyber-attacks [68]. This method compares the non-
tempered UAV camera video feed to the potentially falsified GPS
location, and detect inconsistencies between the UAV video feed
and UAV GPS location. Results indicate that only 65% of their ex-
periments reach more than 80% accuracy of spoofing detection.
Moreover, the success rate of prediction is not as high as ours (ap-
proximately 95%), their scheme is not so effective as DeepSIM either.
According to their discussion, high task load results in more UAV
damage due to higher mental workload. In addition, individual dif-
ferences (e. g., video game experience or specific training) largely
affect the success rate in detecting spoofing attacks. By contrast,
we used the state-of-the-art techniques of deep learning in our
approach. We trained machines rather than humans to identify GPS
spoofing attacks. Our scheme can deal with hundreds of detection
missions simultaneously in a short time. Last but not least, Zhu
et al. did their experiment on a simulation platform. However, we
conducted our experiment in a real scenario using real UAVs and all
the data from the real world, which is more meaningful to reality.

The above proposals made innovative use of airborne equipment
and resources of UAVs, e. g., cameras, maps, IMUs to design promis-
ing out-of-band ways to detect GPS spoofing attacks. For instance,
the method proposed by Zhu et al. [68], however, relied on hu-
man detection and could not be fully automated. Others leveraged

traditional hand-crafted visual features with performance impair-
ment [33], or applied visual features to rectify data and compensate
the drift from other sensors [10], requiring extra devices (i. e., IMUs)
to cooperate with a camera. Table 8 provides a comparison of the
deployment considerations of the countermeasures against GPS
spoofing attacks.

8 CONCLUSION AND FUTUREWORK
In the near future, UAVs will play an increasingly significant role
both in industrial and commercial realms. Unfortunately, UAVs are
inherently prone to GPS spoofing attacks. In this paper, we pre-
sented DeepSIM, a deep-learning based approach for UAVs to detect
GPS spoofing attacks. To the best of our knowledge, this paper is
the first attempt to detect GPS spoofing attacks by determining a
threshold of the similarity between satellite imagery and aerial pho-
tography with deep learning. In our work, we proposed four visual
image anti-spoofing models. To train these deep learning models,
we have constructed SatUAV, a pioneering model dataset. Experi-
mental results show that our approach significantly outperforms
previous human-assisted methods against GPS spoofing attacks.
Furthermore, our method does not impose any modification on
existing GPS infrastructure, structure of GPS signals, and does not
need extra detection equipment.

For our future work, interesting research directions include: 1)
studying the possibility of detecting GPS spoofing attacks in fea-
tureless or feature-poor areas, 2) optimizing parameters (parameter
tuning) to get higher accuracy, 3) designing better models to over-
come more complex challenges, e. g., detecting attacks at night,
dealing with ephemeral objects, 4) carrying out more real experi-
ments under different weather and air conditions (e. g., rain, snow,
fog and haze) in more places for further evaluation, and 5) explor-
ing to combine DeepSIM with time-series analysis or sensor fusion
methods using not only cameras but also gyroscopes, IMUs, and
accelerometers.
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A APPENDIX – MODEL SELECTION
As mentioned before, we have explored four different deep learning
models to detect GPS spoofing attacks. To accelerate the evaluation
process, we experimented on a subset of our dataset. The subset
consists of 599 image pairs. The experimental result can be found
in Table 9.

A.1 Model 1: Distance Threshold
In Model 1, two images I1 and I2 are first sent to a pretrained ResNet
to get their featuremaps F1 and F2, respectively. Then, the Euclidean
distance between the two feature maps is calculated. Finally, based
on the comparison of this distance and the threshold, the model will
determine whether the two images are from the same geographic
location or not.

If the distance is larger than the threshold, it indicates that the
two images are different, thus they are not from the same location.
Otherwise, if the distance is smaller than the threshold, it indicates
that the two images are similar and should come from the same
location. The data was not split into training set and test set since
there is no actual training. Every possible integer threshold was
tested during our experiments, the results using the best threshold
are reported in Table 9. Figure 9 shows the pipeline of this model.

Figure 9: Network Structure of Model 1: Distance Threshold.
The black arrows indicate data flow, there is no trainable
component in this model.

Algorithm 3:Model 1: Distance Threshold
Input: Two images, I1 and I2
Output: 1 or 0, 0 indicates the images are from the same

location, 1 indicates the opposite
Initialize: Pretrained ResNet and threshold T ;
F1 = ResNet(I1);
F2 = ResNet(I2);
D = EuclideanDistance(F1, F2);
if D ≥ T then

return 1;
end
return 0;

A.2 Model 3: Semi-Siamese Network
We adapted a Semi-Siamese Network [67] as the classification
model. A pretrained ResNet was also leveraged to obtain the fea-
ture maps of I1 and I2. Thus, in place of directly applying threshold
based linear discrimination, a 3-layer Fully Connected Network is
attached to the end of the pretrained ResNet model to determine
whether these two images are from the same geolocation. The loss
function we use in Model 3 is Binary Cross Entropy loss, which is
shown as follows:

L = −(y × loд(p) + (1 − y)loд(1 − p)), (7)

http://jmlr.org/papers/v15/srivastava14a.html
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Table 9: Experimental results of all candidates for the On-ground Model on a subset of the dataset.

Model Dataset Threshold Accuracy Precision Recall Error Rate F1 Score

SatUAV-Suzhou 550 0.670 0.642 0.769 0.330 0.7001: Distance Threshold SatUAV-Switzerland 423 0.781 0.836 0.700 0.219 0.762
SatUAV-Training 2 0.931 0.914 0.935 0.069 0.9242: Siamese ResNet SatUAV-Test 2 0.900 0.905 0.931 0.100 0.918
SatUAV-Training 0.5 0.912 0.856 0.992 0.088 0.9193: Semi-Siamese Network SatUAV-Test 0.5 0.892 0.859 0.953 0.108 0.904

where y denotes the label of two images, and p denotes the output
of the network.

Figure 10: Network Structure of Model 3: Semi-Siamese Net-
work. The black arrows indicate data flow the blue section
is fixed and not trainable, the green section is a trainable
network.

Figure 10 shows the pipeline of Model 3. As shown in the figure,
the pretrained ResNet is fixed and will not be trained, only the
Fully Connected Network will be trained during the whole training
process. This technique is called transfer learning and saves a lot of
computation time and memory usage for training.

A.3 Pros and Cons of Each Model
For Model 1, we have conducted experiments on the Suzhou and
Switzerland subsets of the SatUAV. And for the trainable models,
Model 2, 3 and 4, we divided the whole dataset into two parts,
training data and test data. 80% of the dataset was randomly chosen
to become training data, and the rest of them became test data. The
hardware is the same as mentioned in Section 5.1. The experimental
results of all candidates for On-ground Model are summarized in
Table 9.

A.3.1 Model 1. Model 1 is a naïve model that does not require a
high-end UAV controller to do the computation task, thus it is also
faster than Model 2 and 3. Training is not needed, and the threshold
of Model 1 is adjustable by the UAV operator.

The down sides of Model 1 outweigh its up sides. Model 1 is too
naïve to performwell in most realistic scenarios. Its F1 score is much
worse than Model 2 and 3. Model 1 is not trainable, which means it
could not benefit much as data volume grows. In addition, there is
one severe problem of Model 1 we observed as the experiments goes
on. The best thresholds for different locations have large variations.
As shown in Table 9, the best threshold value for Suzhou data is 550
while the best threshold value for Swiss data is 423. Hence, Model
1 lacks generalization, and is not as robust as Model 2 and 3.

Figure 11: ROC curves of 4 models. Model 1 runs on SatUAV-
Suzhou and SatUAV-Switzerland; Model 2, 3 and 4 run on
SatUAV-Test.

A.3.2 Model 2 and Model 3. These two models are both train-
able, which means they could evolve with more data collected for
training. Unlike Model 1, Model 2 and Model 3 have much better
generalization ability. One can train the model on SatUAV which
only contains 6 cities but apply it globally on many human set-
tlements. Similar to Model 1, there is an adjustable threshold in
Model 2. But Model 3 has the best performance (F1 score) among
all models. Though it is a little bit slower than Model 1, it is much
faster in training than Model 2 and it does not require a high-end
GPU server for training or inference. All training and testing of
Model 3 can be done on a CPU server. Both models are slower, more
time- and resource-consuming than Model 1. In addition, Model 2
requires a high-end GPU for efficient training.

A.3.3 Model 4. To balance the trade-off between accuracy and
model complexity, we derived a new model from Model 2 that
could run on the UAV’s OBC independently without the assistance
from the remote controller. Thus, we call it On-board Model. On-
board Model is designed as a countermeasure of jamming attacks. If
the attackers conduct a jamming attack to a UAV’s remote control
channel between the UAV and ground station, the UAV could still
launch this On-board Model to detect spoofing attacks by itself.
It is noteworthy that satellite imagery of scheduled flying area
should be downloaded in advance to the UAV’s storage before
flying. However, the shortcoming is that accuracy and F1 score are
reduced, compared with other complex models.
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A.3.4 Summary. The Siamese ResNet and the Semi-Siamese Net-
work get comparable performance. Both models outperform Model
1. The Siamese ResNet has the highest F1 score. However, the Semi-
Siamese Network has much less trainable parameters, thus it can
be trained in a short time even without a CUDA-enabled GPU. The
biggest advantage of Model 4 is it can be run on-board. The Receiver
Operating Characteristic curves (ROCs) of all the models are shown

in Figure 11. Based upon the results, we chose Model 2—Siamese
ResNet as the On-ground Model that runs on a ground station, and
Model 4—Siamese SqueezeNet as the On-board Model that runs on
a UAV.

To conclude, both Model 2 and 4 are good choices for Deep-
SIM. One can choose a model depending on the existing hardware
resources and circumstances.
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