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ABSTRACT
Digital forgetting deals with the unavailability of content uploaded
to web and storage servers after the data has served its purpose. The
content on the servers can be deleted manually, but this does not
prevent data archival and access at different storage locations. This
is problematic since then the data may be accessed for unintended
or even malicious purposes long after the owners have decided to
abandon the public availability of their data. Approaches which
assign a lifetime value to data or use heuristics like interest in data
to make it inaccessible after some time have been proposed, but
digital forgetting is still in its infancy and there are a number of
open problems with the proposed approaches.
In this paper, we outline a general use case of cryptographic puz-
zles in the context of digital forgetting which—to the best of our
knowledge—has not been proposed or explored before. One prob-
lem with recent proposals for digital forgetting is that attackers
could collect or even delete anyone’s public data during their life-
time. In our approach, we deal with these problems by making it
hard for the attacker to delete large quantities of data while mak-
ing sure that the proposed solutions will not adversely deteriorate
user experience in a disturbing manner. As a proof-of-concept, we
propose a system with cryptographic (time-lock) puzzles that deals
with malicious users while ensuring the permanent deletion of data
when interest in it dies down. We have implemented a prototype
and evaluate it thoroughly with promising results.
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1 INTRODUCTION
Users share tremendous amounts of data by uploading content on
social media: in 2017, users have been reported to have shared
46,000+ photos on Instagram and watched 4,000,000 videos on
Youtube, they have published 75,000 pieces of content on Tumblr
and have sent roughly 456,000 tweets on Twitter—all per minute [4].
Typically, the content uploaded to social networks and sharing
platforms, such as photos, videos, and messages, has relevance
only for a certain amount of time and loses importance when time
passes. The data, though, often remains available, potentially open
to misuse by third parties out of curiosity or with malicious intent.

Content owners and persons related to the content may not want
the data to remain publicly accessible after a certain amount of time
has passed since the availability of past data might be damaging
for them in present or in the future. The Right to be Forgotten [15]
and ephemerality [21] are concepts that are gaining momentum in
digital contexts with the passage of time. However, when something
is deleted from the Internet there is no guarantee that the content is
indeed gone for good. The data might have been shared, duplicated,
or archived elsewhere online since the time of its creation and users
generally do not have control over this process.

To deal with these issues, technical proposals with the purpose of
Digital Forgetting have beenmade, including Vanish [7], EphPub [3],
and Neuralyzer [28]. They try to achieve their goals by uploading
the content in encrypted form along with information on where
and how to extract the decryption key during the data lifetime.
Since trust in a central third party is not a generally applicable
assumption, these approaches store the decryption key on a public
distributed infrastructure, such as in distributed hash tables [7], on
domain name system servers [3, 28], or using public websites [19].
The main property that is desired by such an infrastructure is that
it ’forgets’ the key with time and that content owners are also
able to manually destroy the key when needed. The system and
attacker model that these approaches deal with is one where the
attacker becomes interested in the data after its expiration. Due
to the deletion of the key by then, the attacker will be unable to
access the unencrypted content.

In this paper, we build on these approaches and focus on im-
peding and preventing an attacker from interfering with the data
before its expiration time. This is challenging because it concerns a
time when data is meant to be publicly available. We concentrate
on the part where an attacker may want to proactively collect large
amounts of content or remove it by interfering with the key or
deleting it on the public infrastructure. Knowing that an attacker
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can pretend to be a normal user that should be granted access to
public data during its lifetime, our goal is to make it as difficult and
costly for an attacker to interfere or access data on a large scale
before the expiration time. The solution should affect normal users
as little as possible and still be effective against a strong adversary
with strong computing and storage power.

With these goals in mind, we introduce the idea of applying
cryptographic puzzles to support distributed schemes for digital
forgetting by securing them against attacks that aim to destroy
or collect data on a large scale. Our basic idea is that everybody
accessing the data, including future adversaries, needs to provide
a proof of work before being able to access the content of an en-
crypted object. We achieve this without a central server for work
verification but instead only use the distributed infrastructure and
implicit verification with time-lock puzzles [20], given at the moment
when a participant is able to decrypt the data. This ensures that
if an attacker has access to the underlying data, he or she indeed
has done some work. Time-lock puzzles also have the property of
being sequential in nature, which means using more machines will
not reduce the time to their solution. We show that it is hard for
an attacker to successfully delete the decryption key and collect
data on a large scale when addressing the system as a whole, in
particular a large percentage of all objects protected by a scheme
for digital forgetting.

As proof of concept, we present a system that incorporates puz-
zles with the recent Neuralyzer [28] and show that introducing
cryptographic puzzles substantially reduces the impact of an at-
tacker that attempts to delete or collect a lot of data. In more details,
we design and evaluate a scheme in which a normal user gets to
solve one easier, faster-to-solve puzzle, which takes little time. An
attacker, however, will have to go through the process of solving
two puzzles, the second one being more time consuming, before
data can be deleted (we can have more than two puzzles of in-
creasing difficulty as long as this does not increase setup time
significantly). Our evaluation results demonstrate that our proposal
can be realized and the extra time needed for creating the puzzles is
minimal. The extra overhead in terms of file sizes is small and it is
independent of the data type and size. The time to break the puzzle
to gain data access varies smoothly with the selected difficulty of
the puzzle.

In short, our main contributions are as follows:

• We revise and extend previous adversarial models that have
been proposed for digital forgetting to incorporate attacks
during the data lifetime.
• We propose the use of cryptographic puzzles for digital for-
getting and demonstrate how they can be applied in a dis-
tributed manner without trust in one central verification
party.
• We design a scheme that enables access to public data at
very low cost for regular users but make it very costly (time-
consuming) for an attacker to save or delete decryption keys
on a large scale.
• We develop a prototype implementation based on Neura-
lyzer [28]. Our results show that the overhead in terms of
the time needed for data object creation and the increase in

file size are minimal. The time to access data for a normal
user can flexibly be adjusted with the difficulty of the puzzle.

2 MODELS AND RESEARCH GOALS
A number of proposals have been made to assign a pre-determined
lifetime value to published data [3, 7, 19] or to use heuristics to
make the data inaccessible [28]; heuristics may, e. g., be based on the
interest in data as determined by the number of recent access oper-
ations. In the following, we introduce the considered system and
attacker models, describe our research goals, and give background
information on one specific system we will base our evaluations
on.

2.1 System Model
The general procedure of all schemes above is as follows:

(1) The owner of the data content creates an encrypted data
object and assigns a (preliminary or fixed) expiration time
t0e for the object. We denote the time at which the encrypted
data content is published or uploaded for public access as tc .

(2) During the lifetime of the data object, i. e., at all times t
with tc ≤ t < txe , anyone can access the object and can
successfully decrypt it to access the data. x here represents
the total amount of lifetime which may have been extended
from the originally assigned lifetime of the object: txe ←
t0e + x . If no lifetime extensions were made then x = 0 and
txe = t0e .

(3) After txe , no one should be able to access the data object
other than the people who already know the decryption key.

We consider systemswith a distributed, dynamic, and publicly acces-
sible infrastructure where data—in particular decryption keys—can
be temporarily stored. This does not need to be an infrastructure
with the primary purpose of data storage (like cloud servers) but
rather comprises a secondary storage systemwhere data is stored in
ephemeral storage (such as cache entries); examples include entries
in distributed hash tables (DHTs) [7], website encodings [19], and
domain name server (DNS) caches [3, 28] (Sec. 2.4 & App. A.1 pro-
vide details). We do not alter the infrastructure itself, but make use
of states or storage space to upload and retrieve keys during their
lifetimes. The dynamics of the infrastructure lead to modifications
(churn) and data loss that result in automatic deletion of the stored
data (keys) after some time. The solutions we consider place no
trust in a third-party server.

The encrypted data objects from a digital forgetting scheme
comprise the encrypted content as well as the information required
to successfully retrieve and/or build the required decryption key.
The successful retrieval of the key is only possible if the object has
not yet expired and is still accessible. Once keys are uploaded to
the ephemeral storage, they typically cannot be modified directly
(at least for DHTs and DNS cache entries).

2.2 Attacker Model
In our threat model we consider attackers whose target is not a
single user but rather system-wide attacks that attempt to collect or
interfere with data on a large scale for many users. In a sense these
attackers are similar to perpetrators in a network-wide denial-of-
service attack as they want to cause damage to millions of users
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Figure 1: Considered attacker model: Before the data expira-
tion, we consider curious-but-non-interfering attackers and
interfering attackers. After the expiration time, we consider
omnipotent attackers that may also attempt to attack tar-
geted users/data objects.

indiscriminately. That means, our threat model does not focus on
targeted attacks on specific users before the expiration time, but
includes attackers that want to collect or delete lots of data during
the data lifetime; a specific user and a data object may turn into a
focused attack target only after expiration of said object.

This threat model is novel in the sense that, in previous schemes,
a user could be turned into an attack target by an adversary only
after the content of interest had expired as it was assumed that the
attacker becomes interested in a specific data object after its expiry.
Our new attacker may have the following malicious intents (see
Fig. 1):

(1) The curious-but-non-interfering attacker may want to proac-
tively collect a large amount of data indiscriminately once
available in order to extract data of interest and use it for
malicious purposes after its expiration. Such an attacker is
looking to take a snapshot of all the publicly available data in
some fixed time period and can keep repeating this regularly,
e. g., daily, weekly, or monthly. Taking such snapshots is
feasible for a strong adversary where its success and extent
depend only on the size of the available communication band-
width and size of the storage space. This attacker essentially
defeats the essence of digital forgetting.

(2) The interfering attacker may want to make (large amounts
of) data inaccessible during the data lifetime by launching an
attack that exploits the weakness of the proposed schemes,
deleting decryption keys during the lifetimes and thus mak-
ing data objects inaccessible. A second instance of an in-
terfering attacker would keep data alive by extending their
lifetimes.

Curious-but-non-interfering attackers are threats to all proposals
for digital forgetting [3, 7, 19], while interfering attackers are an
issue mainly to schemes that allow flexible lifetime extensions (e. g.,
based on user interest [28]).

2.3 Goals and Challenges
Although we may not be able to prevent attacks entirely due to
the intended public and unrestricted availability of the data during
its lifetime, our goal is to make sure that these attacks and actions
become costly enough to deter attackers. This evokes a need for
making an attacker (and common users) do work before they are
able to save or delete a data object. The work should be of such a
nature that over time, once an attacker has gone through a certain

number of objects, it should not take less time than before to access
or delete the next object.

A few additional thinkgs need to be kept in mind: Having many
machines should notmake the process of getting to one object faster;
if that happens any proposed scheme would have very little impact
for resource-rich attackers. Another important thing to consider is
that we should have strong control over how much work a normal
user on a normal machine (or mobile device) will need to do so that
they do not face difficulty in obtaining the requested data.

With respect to our system model, we can thus formalize our
goals as follows:

Functional Goal: Between data object creation time tc and the
expiration time txe , anyone who has the (encrypted) data object can
access its content, including curious-but-non-interfering attackers
and interfering attackers.

Security Goal 1: An attacker who becomes interested in a spe-
cific data object (for whatever reason) after txe (after its expiration),
should not be able to access it.
Security Goal 2: A curious-but-non-interfering attacker should
find itself in a situation where it is infeasible to take a snapshot of a
meaningful percentage of publicly accessible content (data objects
between tc and txe ) in a fixed time period, e. g., a day.
Security Goal 3: An interfering attacker should find itself in a
situation where a deletion attack over a meaningful percentage of
accessible data is infeasible.

The first security goal concerns only specific data objects whereas
the latter two security goals are concerned with large sets of pub-
licly available data objects. Our notion of security is as follows:
Suppose an attacker could take a snapshot or delete tens of thou-
sands of data objects (some percentage of the total available public
content) in a fixed time period with one (powerful) machine. If we
can increase the number of machines required to pull off such an
attack to a number which increases the costs for an attacker in
terms of power or rent for the machines by a huge percentage and
thereby reduces the amount of data objects captured in a snapshot
or deleted in a fixed time period, we say a large-scale attack has
now become infeasible for the attacker.

2.4 Background on Neuralyzer Scheme
As our proposed system is designed to support the existing dis-
tributed schemes for digital forgetting, this section serves as an
overview of one such scheme: Neuralyzer [28]. We will be referring
to this scheme later in the paper to evaluate the effectiveness of
incorporating cryptographic puzzles against attacks that aim to
destroy or collect data on a large scale.

In Neuralyzer [28], similar to EphPub [3], data is encrypted and
stored along with a list of domains on DNS server (resolver) caches
that encode the decryption key. This object is called Ephemeral
Data Object (EDO). To encode the key in a list of resolver-domain
pairs, the following steps are taken:

(1) Per key bit, a domain and a DNS resolver are chosen at
random. The domain is selected from a list of domains that
are used infrequently (i. e., not part of the Alexa list). To
add redundancy and enable key lifetime extensions, multiple
resolver-domain pairs are selected per key bit.



(2) It is checked whether that domain is in the server’s cache
by sending the server a non-recursive request.

(3) If it is uncached, the resolver-domain pair is selected to be
used. If the pair is meant to represent a key bit of value 0 then
it is kept the way it is, otherwise (for key bits 1) a recursive
DNS request is sent to the resolver so that the domain is
stored in the server’s cache.

This allows to encode the key bits to be temporarily stored in dis-
tributed DNS resolver cache entries and the key bits to be extracted
as long as they are present in the cache. The decryption process is
as follows:

(1) For each key bit, several resolver-domain pairs are stored.
Each resolver is sent a non-recursive request about the re-
spective domain. If more than a threshold of domains are
present in the caches of their respective servers, the key bit
is interpreted as 1, otherwise as 0.

(2) Now for each key bit representing 1, one of its resolver-
domain pairs is selected and a recursive request is sent if
the TTLs (time-to-lives) of all these pairs fulfill a certain
criteria. This is done in order to extend the lifetime of the
EDO. Hence, the key only gets deleted either by manual
revocation or when the interest in its underlying data dies
down. The lifetime extension is called ’refreshing’ the EDO.

Note that manual revocation is done in a similar fashion as lifetime
extension. For each key bit 0, its resolver-domain pairs are selected
and recursive requests are sent.

3 USE OF CRYPTOGRAPH. PUZZLES
Cryptographic puzzles are a well-known defense strategy against
distributed denial-of-service (DDoS) attacks [10, 27]. In these at-
tacks many machines send simultaneous requests to a particular
server, which overwhelms the server and makes the service un-
available to its intended users. Cryptographic puzzles are used to
prevent such attacks; they can be time-based [20], memory-based
[5], or bandwidth-based [24]. When an attacker sends a request,
the server replies with a question or puzzle (see Fig. 2a). To answer
that question, an attacker will have to perform considerable com-
putations or use substantial memory. The server then verifies the
answer and serves the data. Now for a normal user the amount
of time spent on solving the puzzle is negligible but an attacker
would need to solve thousands of puzzles to make the DDoS attack
successful which will cost him a lot of time and power.

We argue that a defense against the collection or deletion of large
amounts of data in digital forgetting can be similar to defending
against a network-based denial-of-service attack. In our case, the
goal is to make it difficult for attackers to delete each data object
by making them solve puzzles before they get access to the objects.

As a difference, we are forced to use self-decrypting puzzles in
the sense that once the attacker has the data object, there will
be no communication with the data uploader or any third party
server for the purposes of verifying the solution of the puzzle (we
stress that we are addressing data that is supposed to be publicly
available at some point in time—so we cannot make use of classical
access-control mechanisms to restrict the access to the data).

Our puzzles and data are contained inside a data object and the
data should only be accessible after the puzzle is solved correctly.

Proposals involving cryptographic puzzles and proof of work typi-
cally involve three entities: the system that creates the puzzle, the
one which solves it, and then the one that verifies it. Typically
the verifier is a third party or the creator of the puzzle itself. In
our setting, we can neither resort to a third party nor add more
communication to the system (see Figure 2b).

3.1 The Time-Lock Puzzle
Different cryptographic puzzles are commonly used. They are, e. g.,
based on the factorization problem (factorizing the product of two
large primes) or on finding a string such that the hash of the string
begins with a certain number of zeros [1] (as used in the mining
algorithm of current digital currencies). Puzzles like hashcash can
be solved faster if the solvers have many machines at their disposal.

We base our proposal on the time-lock puzzle proposed by Rivest
et al. [20]. Its security depends on the hardness of the factorization
problem. The main idea behind the puzzle is making sure that an
attacker must spend a certain amount of time on the puzzle before
getting the data. The major strength of this puzzle is the fact that
it is intrinsically sequential in nature and having more comput-
ers will not help in getting to the solution faster. The time-lock
puzzle is based on repeated squarings which are not parallelizable.
We describe it first for encrypting a general messagem and then
demonstrate its applicability to digital forgetting.

3.1.1 Creating the Puzzle. We want to encrypt a message M
such that its decryption takes at least a period ofT seconds. Choose
two large random primes p and q. Let n be their product and Φ(n) =
(p−1) (q−1). Let S be the squarings modulon per second a computer
can perform. Call t the product of T and S . Generate a random key
K which should be big enough that brute-force searching for it is
infeasible. Encrypt the messageM with K to produce the ciphertext
Cm . Pick a number α mod n and encrypt the key K asCk = K +α2

t

mod (n). To do this efficiently, first compute e = 2t mod (Φ(n))
and then b = αe mod (n). Forget everything and only keep n, α , t ,
Cm , and Ck .

3.1.2 Solving the Puzzle. As searching for the keyK is infeasible,
the fastest approach is to compute b mod (n). Knowing Φ(n) will
make computing e efficient and hence b will be computed easily
too, but to get Φ(n) from n is as hard as factoring n, which is far less
efficient than repeated squaring. So the fastest way of computing
b is to start with α and square the result t times sequentially. To
control the difficulty of the puzzle we can toggle t ; the bigger t , the
more time it will take to get to the solution.

3.2 Puzzles for Digital Forgetting
In digital forgetting, we deal with content available online to which
we add the property of becoming forgotten. Online data needs to be
accessed quickly by a normal user. When we add puzzles, it means
that more time will be needed to access the object as a user will
spend some time on solving the puzzle. So we need puzzles which
can be solved in an acceptable time.

Our major insight is that we can add more than one puzzle to
the same data object in such a way that a malicious user will need
to solve all of the puzzles to be able to launch deletion attacks while
a normal user only accessing the data needs to solve only as little



Figure 2: Use of Crypto Puzzles. (a) The parties and communication involved in DDoS prevention based on cryptographic
puzzles: 1) The user requests data, 2) the server responds with a cryptographic puzzle, 3) the user solves it and returns the
solution, 4) the server verifies the solution and 5)—given successful verification—transmits the requested data. (b) The setup
and communication involved in our use of cryptographic puzzles for digital forgetting: 1) The user requests the data, 2) obtains
a data object that contains the data protected by a cryptographic puzzle, and 3) can access the data after having successfully
solved the puzzle.

1-request

2-data+

puzzles

3-solve

Puzzle 1

User Server
4-Query Key Storage

5-Information 

about key

6-recon-

-struct

key +

data access

8- Repeat steps 4, 5 and 6 

7- if key is invalid,

solve Puzzle 2

Figure 3: Our basic design: 1) The user requests data, 2) the server responds with a data object containing two timelock puzzles
and encrypted data content, 3) the user solves the first puzzle and gets access to the decryption key retrieval information, 4)
the user uses this information to retrieve the key by querying the distributed key storage, 5) the user gets a response from the
key storage, 6) the user constructs the key and decrypts the data content. 7) If the reconstruction was not successful (e. g., due
to an interfering attacker), the user solves the second puzzle, and 8) the user repeats steps 4 to 6 using the new key retrieval
information.

as possible, thus introducing a form of asymmetry between regular
users and active attackers. Since the puzzles can be of increasing
difficulty, a framework of puzzles is being put to use; it will be
explained in detail in the next section.

For a realization of our proposal we need to select parameters for
the time-lock puzzle (for concrete instantiations in our implemen-
tation, see Section 5). Typically we consider a puzzle easy if can be
solved by a standard PC or laptop within a few seconds. We should
thus set t to a value that allows one puzzle to be so solved within
this timeframe (depending on the assumed number of squarings
per second that can be calculated). We give typical values when
reporting our evaluation and results.

4 SYSTEM DESIGN
Our proposed system design is depicted and explained in Figure 3.
Before we present details of our proposal, we shortly review the
general concept of schemes proposed for digital forgetting with
and without the capability to update and reset data lifetimes.

Figure 4: Idea: The public data object contains the relevant
data in encrypted form. The encryption key K is stored in a
dynamic distributed storage that automatically deletes the
key after a while. The data object also contains information
on where to find K during its lifetime; we assume it is stored
in a table with (<key bits>, <address>)-tuples. Our proposal
protects the table by cryptographic puzzles.

4.1 Preliminaries
We consider a public data object in which data is encrypted with an
encryption key K . This data object additionally contains informa-
tion on where to find the key during the data lifetime, see Figure 4.
Without loss of generality, we assume that the encryption key K
is split into one or more key parts (key shares or key bits) Ki that



Figure 5: Structure of a digital-forgetting data object, con-
sisting of the data itself and two tables for key-lookup, each
encrypted with a key protected by a puzzle of increasing dif-
ficulty.

are stored by the data publisher/creator on a dynamic distributed
storage that automatically and gradually deletes theKi after a while.
We assume that the information on where to find the key bits is
stored in a table T with (<key bits>, <address>)-tuples. The key
is generally recoverable as long as the key bits are available and
extractable from the infrastructure. The scheme may provide sup-
port for lifetime extension, e. g., based on user interest in the data:
as long as there is sufficient interest, the key will remain available
in the infrastructure. These lifetime extensions can be realized in
a manner that is fully transparent to the users, but they may also
enable an attacker to interfere with the intended lifetimes in a
malicious manner.

4.2 Our Approach
Our scheme adds cryptographic time-lock puzzles to protect the
access information table T in the data object, thus adding a layer
of difficulty for the key extraction process. The idea is to encrypt
T using a symmetric key E, protect E by a time-lock puzzle, and
make the resulting puzzle part of the data object. To access the
information on where to find the key bits Ki will require the user
(and any potential attacker) to solve a puzzle first, thus extracting
E, which will then reveal the table T with the storage locations of
Ki . The puzzle itself does not have an expiration time, but the table
that can be accessed with the extracted key E will only contain
valuable information during the lifetime of the data object.

More precisely and in order to make the premature deletion of
data more difficult than data access during the data lifetime, our
scheme consists of the use of two tables T1 and T2, each protected
by a time-lock puzzle of different difficulty level, see Figure 5. The
tables Ti , i ∈ {1, 2}, contained in each data object have the following
properties:

(1) T1 and T2 provide access information to separate storage
locations of the key K . No matter which table (and puzzle) a
receiver uses to access the decryption key K , (s)he will be
able to get the data before its expiry date.

Figure 6: Process and steps in using our puzzle-based struc-
ture.

(2) T1 is protected by an easier puzzle P1, T2 by a harder puzzle
P2 that takes more time to solve. The first puzzle P1 pro-
vides a hurdle against large-scale data collection attacks. The
second puzzle P2 provides protection against data deletion
attacks in which an attacker tries to remove/invalidate key
bits during the data lifetime.

(3) If the key bits Ki accessible by the information in table T1
get inaccessible as a result from a deletion attack, the data
can still be accessed by recovering the key K from table T2.
If the key bits Ki accessible by the information in table T1
get inaccessible as a result of other natural reasons near
the object’s expiry time, a user can still try his luck with
table T2 and if that works out, potentially be able to restore
the key in the storage locations of table T1 as long as the
underlying scheme provides this functionality and allows to
reset specific entries (as, e. g., DNS-based schemes do).

We note that we can have as many tables and hence puzzles with
different difficulty levels as desired. The number of puzzles should
depend on how much this affects setup time of the object and the
size of the final data object. If the underlying scheme takes long time
in distributing a key, it might be not be desirable to have multiple
puzzles. For our evaluation we chose two tables, one guarded by an
easier and one by a harder puzzle. The process of interaction with
the puzzles and data retrieval are demonstrated in Figure 6.

Opposed to other uses of cryptographic puzzles, there is no need
to verify the solutions to our puzzles before someone gets access
to the underlying data. Incorrect solutions would only mean that
the required work has not been done, leading to incorrect retrieval
information about the key.

Key Refreshment / Lifetime Extension: The following considera-
tions apply to schemes that enable flexible lifetime extensions. The
more difficult puzzle P2 will have to be solved less frequently or
not at all. Thus key access and refresh operations for the key stored
in T2 will occur rarely or not at all. So we need a mechanism that



allows to refresh the key bits of table T2 when a refresh operation
for the key of the first table T1 is happening—without having to
solve P2.

Mechanism: The exact mechanism to enable the lifetime ex-
tension for the key encoded by table T2 depends on the type of
representation of the key bits Ki in the distributed storage. We here
provide the idea for Neuralyzer [28] (as described in Sec. 2.4): By
encrypting the tables with puzzles, we are trying to hide from an
interfering attacker (who wants to delete lots of data) the table rows
that represent a key bit of 0. The reason is that this attacker can
delete the object by picking resolver-domain pairs that represent
0 key bits and sending recursive queries to the servers for those
domains. So without solving puzzle P2, the attacker will not know
the resolver-domain pairs representing 0 bits and hence will not be
able to destroy the key in the distributed storage prematurely by
sending a recursive request.

However, picking pairs that represent key bit 1 and sending
recursive requests to the servers about the domains would also
have an opposite effect as it will essentially extend the lifetime of
the object. Due to asymmetry of 0 and 1 key bits in the scheme of
Neuralyzer [28] as well as EphPub [3], 1 key bits cannot be deleted
prematurely but will only be removed by the natural replacements
in DNS resolver caches. That means, we can make available a copy
of the addresses of the resolver-domain pairs that represent key
bits 1 from the table T2 without requiring a user to decrypt T2 as
they cannot be used to delete the object.

Thus, our process is as follows: Whenever we refresh a DNS
entry of the easier table T1 (using the 1 key bit addresses in T1)
we do the same for T2 without ever solving the harder puzzle P2
(using the 1 key bit addresses in T2 that we are making available
now by keeping them unencrypted). So in short, additional to the
encrypted table T2, we keep a copy of the unencrypted information
about the resolver-domain pairs in the second table representing
the key bit 1 (and only bit 1!).

Resistance to attacks: As far as attacks during the lifetime of
an object are concerned, we note that this does not reveal exactly
which bits are 1 (and hence the key) because T2 that captures the
ordering of the 1s and 0s is encrypted. The only information that
the unencrypted pairs give away is the total number of key bits
that represent 1. Arguably, it is much more efficient to solve the
easier puzzle P1 (or even the harder one) to get the actual key than
to brute force the key using a reduced key space as we now know
the total number of 1s the key contains.

However, if we were to leave these resolver-domain pairs unen-
crypted, then after the object has expired the number of 1s the key
K consists of would become common knowledge to an attacker. So
the object would indeed become less secure because of the reduced
key space. But actually if the attacker then solves P2 to get T2,
it can map the unencrypted pairs to T2 and reconstruct the key
without ever querying, even after the object has expired. That is
why we encrypt this information along with the actual data content.
Now whenever an easier puzzle is solved, the solver gets the key
to decrypt the data content as long as the object still has not yet
expired. He or she decrypts the data and along with it the 1 key
bit information which is then used to extend the lifetime of the
addresses of the second table T2 (and hence the key).

One final remark here is that an attacker with different intentions
like extending the lifetime of a multitude of different objects would
not be deterred by this too much as compared to an attacker who
targets deletion. But this attacker would still have to solve all the
easier puzzles.

4.3 Security Analysis
Before analyzing the security of our proposal with respect to the
security goals defined in Section 2.3, we shortly discuss how it
meets the functional goal defined in same section.

Functional Goal: Our timelock puzzle system is implemented on
top of the underlying scheme used to provide digital forgetting. We
encrypt the information required to retrieve the encryption key
with a timelock puzzle. Anyone with access to the (encrypted) data
object who can solve the (first) puzzle before the expiration time txe ,
can then follow the underlying scheme to retrieve the key. If c1 is the
time used to solve the (first) puzzle, this provides access to specific
data objects until txe − c1 for all parties, including curious-but-non-
interfering attackers and interfering attackers. Our second puzzle is
another way to get the same key using the same scheme. The data
is retrievable as long as users can solve the second puzzle in time
c2 before txe − c2. We note that this reduces the data access time by
a maximum of c1 + c2 (if Puzzle 2 has to be leveraged to recover the
key), but argue that this time is significantly shorter than typical
data lifetimes and does thus fulfill the functional requirement.

Regarding the security of our proposal, we note that it becomes
harder to delete an object (specifically its keyK ) due to the presence
of two puzzles. It is also hard to collect large amounts of data
because a cryptographic puzzle will have to be solved in all cases.
More specifically, we relate our proposal back to the three security
goals:

Security Goal 1: After txe , if the underlying scheme provides no
further access to the data, we argue that Security Goal 1 is achieved
since our system operates on top of the underlying digital forgetting
scheme. In other words, we are only adding a delay before key
retrieval and the puzzle does not contain information on the key bits,
but only references to their storage locations. Hence, after expiry,
successful recoverability of the encryption key and knowledge of
the cryptographic puzzles cannot lead to a successful access to data
content.
Security Goal 2: Before txe , a curious-but-non-interfering attacker
can save a data object for the purposes of malicious use in the future.
The timelock puzzles essentially guarantee that given a machine of
certain processing power (with capabilities for specific numbers of
squarings modulo n per second), the puzzle creator can set the time
needed to solve the puzzle. Since the puzzle is sequential in nature,
a solver cannot break it into sub tasks and do them in parallel. So by
using the puzzle we make sure that an attacker spends at least a few
seconds working on a single data object before saving it or its key.
We thus limit the number of successful attacks an attacker can do
per day based on the number of used machines and their processing
power. While it is true that we cannot make an attacker spend too
much time on a data object given the nature of our data that is
meant to be consumed by normal users as well, we will discuss
in Sections 5 and 6 how costly we still make these attacks for an



attacker. Hence, although we cannot fully prevent curious-but-non-
interfering attacks, we make taking regular, complete snapshots
much harder.
Security Goal 3: Before txe , our first puzzle targets Security Goal
2. Given the inherent difference in attacks (unfocused data collec-
tion vs. targeted interference), we make it even more costly for
an interfering attacker to delete a data object. More specifically,
we decouple the time for curious-but-non-interfering attacks from
interfering attacks by distributing the same encryption key twice.
If an attacker manages to delete the key from the first location
successfully, the data object has still not been deleted. Instead, the
attacker must solve a more time-consuming second puzzle and
delete the backup for an effective attack (note that solving two
puzzles can be done in parallel, but the first puzzle will add only a
few more seconds to the time needed by an attacker per object if
done in a sequential manner). In other words, we make a single ma-
chine spend more time deleting an object than saving it. Naturally,
doing this on a large scale for the interfering attacker is even harder
to achieve than a curious-non-interfering attack against Security
Goal 2 (discussed further in Sections 5 and 6).

5 EVALUATION
We have implemented a prototype of our scheme based on Neur-
alyzer [28] (for key aspects of [28] see Sec. 2.4) using DNS cache
entries as its public infrastructure. It uses interest in the object as a
heuristic to determine when the object should become inaccessible.

5.1 Implementation Details
We obtained Neuralyzer’s source code from the authors and inte-
grated our proposed scheme with it. All of our code was written in
Python and it relies primarily on Python’s Crypto library. We also
used PyDNS (version 2.34) in our code which provides a module to
perform DNS queries from python applications. We use 128-bit keys
to encrypt our objects. Each bit is encoded in 8 resolver-domain
pairs for redundancy like in the original scheme. A key bit is inter-
preted as ’1’ if at least 4 out of 8 of these servers return true on a
non-recursive request about their respective domain where ’true’
means that the domain is still in the server’s cache.

To get the key to decrypt the data, one needs to get access to a
table (T1) containing these 128 · 8 (1024) resolver-domain pairs and
to get this information, a puzzle (P1) needs to be solved. Only those
resolver-domain pairs are used where the time to live in the cache
is at least two hours to make practical sense. We encode the same
key in 1024 other different pairs (T2) and then restrict access to it by
a harder puzzle (P2). When an object is decrypted, all the key bits
representing one-key bit in both the tables are refreshed as the act
of decryption shows that there is still some interest in the data. For
each one-key bit, we check whether at least five of the pairs still
respond true to a non-recursive request. If the number is less than
five we take a pair at random and send a recursive request to the
server about the pair’s domain so that it is put inside the server’s
cache. We also check other criteria set by the original Neuralyzer
code such as if the median of the time to live values of these pair is
less than a pre-configured value, we must refresh.

As discussed in Section 4.2, we also need to store a copy of all the
resolver-domain pairs that represent one key bit in T2 separately.

We encrypt this copy along with the data. After solving P1, the
user is able to decrypt T1 and get the decryption key for the data,
which means he will be able to get access to this copy as well and
will be able to refresh T2 without even solving P2. Both tables are
encrypted with separate keys (E1, E2). The keys that encrypt the
tables are modified as described in Section 3.1.1 such that these
modified keys together with the information required to correct
them (α , number of times (t ) that α needs to be squared, and n)
make up the puzzles as part of the EDO (Ephemeral Data Object,
App. 2.4). We set n to be a product of two 1024-bit random prime
numbers and α to be a random 512-bit number.

We ran all our experiments on an Intel Core i7-6600U laptop
(4M Cache, 2.60GHz). The squarings per modulo n our machine
could do were 58 000. So setting t to a value of 58 000 gave us a
puzzle that could be solved in 1 second, 2·58 000 gave us a puzzle
that could be solved in 2 seconds and so on. What we call a harder
puzzle is one which is set to be solved in more than 6 seconds.

We created about 350 different random EDOs whose original
sizes are either 100 kB, 500 kB, 1 MB, 5 MB, or 10 MB. In our
experiments, the difficulty of the easier puzzle P1, i. e., the time
needed to solve it, is set from minimum 1 s to maximum 6 s across
these objects. The difficulty of the harder puzzle P2 was set to times
between 8 s to 1min. We decrypted all the objects with success
multiple times over a period of 8 hours. We made sure that the
harder puzzle works like it is meant to by manually making the
table locked by the easier puzzle invalid.

5.2 Results
Our experiments were divided into encryption and decryption
phases.

During the encryption phase, the important aspects worth
considering were i ) time taken to create an EDO and ii ) size of
an EDO. Figure 7 shows how creating the puzzles takes almost
negligible time compared to the time spent in finding the usable
resolver-domain pairs to encode a key-bit. Usable pairs are those
where the domain is not yet in the server’s cache and the time-
to-live (TTL) field takes a value that is appropriate for the type of
content we are dealing with. For example, for a blog we might want
greater TTL values compared to a tweet. So the majority of the time
is spent on this process, which is costly in terms of communication.
But this work of finding a pair can be done in advance, i. e., there
can be a precomputed list of suitable pairs that is updated by a
process running in the background that adds more pairs to this list
periodically and removes if any of the pairs become unusable. Given
that we have this list now, we will then just need to communicate
with 2048 (2 · 128 · 8) DNS servers as we have two tables, 128-bit
keys, and and a redundancy of 8 for each key bit. This will reduce
communication cost during EDO creation making it faster for a
user to create and upload an EDO.

The results also show that the file size has no significant bearing
on the amount of time spent on creating an EDO because almost
all the time is spent on the DNS communication and creating the
tables and this process is in fact file independent. The average time
(one time cost to create an object) was approximately 70 s if we do
not process resolver-domain pairs in advance. We also see how the



Figure 7: Total time spent in creating
an EDO vs. Time spent on communi-
cating with DNS servers

Figure 8: Original File Sizes vs. EDO
Sizes

Figure 9: Time taken to decrypt an
EDO. Difficulty of the puzzle repre-
sents the expected time needed to
solve it.

work other than the communication just takes a few seconds on
average.

Figure 8 depicts how the size of an EDO exceeds the actual file
size. This increase starts to become negligible as the original file
sizes increase. This makes sense because in every EDO, regardless
of the original file size, we only add limited data such as variables
for both puzzles, encrypted tables, and copy of the resolver-domain
pairs representing the one key-bits in T2. This increase in file size
is almost of a constant size.

For evaluating the decryption phase, we are interested in the
following questions:

(1) Did the puzzles get solved in expected time?
(2) How much time does refreshing the one-bits take?
(3) What was the total time taken to decrypt an EDO?

Figure 9 shows how the puzzles were solved in about the time
that they were meant to be solved in. We found out that refreshing
a table took around 4 to 5 seconds on average. The taller bars in
Figure 9 represent the total time taken that was equal to the time
it took the user to solve the easier puzzle together with the time
taken to refresh two tables (8 to 10 seconds). It needs to be stressed
here that refreshing a table can be done using a background process
and a user can get to see the content as soon as he solves the puzzle
whose difficulty (time needed to solve) we directly control.

6 DISCUSSION
In this section we discuss the impact of our proposal on the success
of an attacker and its performance against specialized devices. For
a discussion and outline of possible integration of our proposal in
online social networks (OSNs) we refer to App. A.4.

Curious-but-non-interferingAttacker:While proposals such
as Vanish [7] and Neuralyzer [28] undermine attackers who aim
to access the data objects after their expiration times, they do not
provide resistance against attackers that are tricking the system by
actively trying to take a snapshot of the data for future use. This
kind of attacker’s job is made extremely tough by our addition of
puzzles over the underlying mechanism, since he will need access
to a large number of machines to perform the extra computation
overhead. An easy puzzle such as the one used in our implemen-
tation requires 174,000 squarings for decryption. In other words,

one million of such EDOs would require 174 billion squarings to be
done in order to get compromised—in addition to the effort required
to retrieve the data object from the underlying mechanism such
as Neuralyzer. It is estimated that 300 million photos are uploaded
on Facebook daily [22]. An adversary who would be interested
in saving these data objects will need to do alarming 53 trillion
squarings daily.

The time it takes to do the above computations to compromise
the daily 300 million uploads on Facebook varies depending on the
number and the processing power of the devices used. Given the
large scale of computation required, the attackers might outsource
the task of taking snapshot of the system to cloud computing ser-
vices. To put this effort into perspective, we leverage Amazon’s EC2
cloud computing service to test the resilience of our added puzzles.

Table 1 details the approximate number of required compute-
optimized EC2 C4.8xlarge instances and the corresponding daily
monetary costs for an attacker to take varied (one quarter, one half
and whole) snapshots of the photos uploaded on Facebook. The
numbers show that the computation costs of conducting such a vast
attack will be too high to make it feasible for the attacker to save
large amounts of uploaded data on regular intervals. It is important
to recognize that this additional effort is required solely to solve the
puzzle(s) and does not account for the time needed to retrieve the
data object from the underlying key storage mechanisms. Moreover,
this analysis does not take those EDOs into consideration that expire
before they were saved.

Interfering Attacker: Another major contribution of our pro-
posal is the resilience added to the underlying scheme against large-
scale early deletion attacks. An adversary who wants to delete, say,
at least a quarter of the 1.2 billion photos uploaded on Facebook in
four days would have to spend about 12,000 days on this mission if
he stays within the allowed limit of 20 Amazon EC2 C4 instances,
given our easy puzzle takes 3 seconds and the harder one takes
a minute. This means that he would need access to roughly two
hundred fifty thousand compute-optimized Amazon C4 instances
for deleting 300 million photos within one day. Even if we believe
in the unlikely scenario where this massive number of instances
exist in the first place and that the attacker manages to get access
to those, this will cost him around 9 million dollars a day to com-
promise these data objects (as illustrated in Table 1). This cost can



Volume Snapshot Attack Deletion Attack

No. of Squarings No. of Instances Monetary Cost No. of Squarings No. of Instances Monetary Cost

75 million 13 trillion 2,840 $108,440 274 trillion 59,625 $2,276,720
150 million 26 trillion 5,680 $216,880 548 trillion 119,250 $4,553,440
300 million 53 trillion 11,360 $433,770 1.1 quadrillion 238,500 $9,106,880

Table 1: The number of Amazon C4 instances required and the resulting daily costs for an attacker to perform Snapshot and
Deletion attacks on 25%, 50% and 100% of the daily uploaded photos on Facebook.

increase even further if additional puzzles of harder difficulty are
added to the system.

It is important to consider that if there were no puzzles in place
to solve at all, only 14,500 Amazon instances or machines of similar
computational abilities would help him to save and/or delete more
than a billion photos in a day easily, assuming that it takes around
a second to download them/send recursive queries. All of this also
does not take into account the fact that this content also can expire
naturally even before the adversary gets to it; either to save or
delete. And with no puzzle guarding the access to these objects, the
probability of an adversary getting to the object before it expires
gets higher as the adversary will be going through objects on a
much greater speed in this scenario.

Attacker with Specialized Hardware: While a higher clock
speedwill ensure that more squarings are done per unit time and the
puzzles are solved faster than the intended time, the clock speeds
have become static in the last decade owing to size of transistors
reaching its limits [14]. Thus, the performance improvements today
are achieved by the use of multi-core processors and parallel com-
puting practices instead. These techniques do not yield significant
improvement on our scheme as the repeated squaring algorithm
used in our proposal is essentially sequential [20]. However, the
well-funded attackers can make use of specialized hardware such
as FPGAs and the latest generations of GPUs, equipped with sup-
port for integer operations, in order to achieve speed up. Some
researchers have shown that off-the-shelf hardware could be used
to accelerate the public key cryptosystems such as RSA scheme by
roughly 4 times and this could in turn be used on these puzzles as
well [9]. Referencing the above calculation, it will still take an ad-
versary to use roughly 50,000 of these specialized hardware devices
to compromise only one quarter of the billion photos uploaded
on the Facebook. So, the expected time improvement for such an
attacker will still be in the order of a small constant number and
the added puzzles will continue to limit the scale of disruption or
copying attacks.

Pre-computations: It could be said that an adversary can solve
a puzzle and start saving the solution. We argue that it will be
very rare that such a strategy would benefit him. Again, let us take
Facebook as an example. The number of objects uploaded in amatter
of days on Facebook is in order of billions but the number of values
of α in the puzzle is an exponentially larger number. Not to mention
α alone does not determine the solution, but it is determined by the
combination of α , n and t . So saving solutions would not make a
significant difference at all. And we can increase the length of these
numbers as well, leading to a much bigger space fromwhich puzzles
can be generated. Creating such a storage by a single adversary with

a finite number of machines appears prohibitive. If the attacker were
to decrypt these billions and billions of objects uploaded in a year
across major social networks and other platforms and assuming all
the puzzles on these objects are supposed to be solved in 5 seconds,
for a single machine this task will take more than a million years.

7 CONCLUSION
In this paper, we outlined and investigated a general use case of
cryptographic puzzles to support the concept of digital forgetting.
The pervasiveness and ubiquity of digital data creates a desider-
atum for solutions that enable transientness and ephemerality of
person-related information, data, and media. The attacker model
here differs from classical attackers since we are trying to protect
data from access and deletion during its lifetime when the data is
supposed to be publicly available. The approach we propose intro-
duces an asymmetry between regular users and active attackers
and specifically takes into account the attacks that attempt to delete
public data during their lifetime. Our proposal makes it hard for the
attacker to delete large quantities of data while making sure that
the proposed solutions will not adversely deteriorate user experi-
ence in a disturbing manner. Our system relies on cryptographic
time-lock puzzles and deals with malicious users while ensuring
the permanent deletion of data when interest in it dies down. We
have implemented a prototype and evaluated it thoroughly with
promising results, which makes a case for further research in this
area.
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A APPENDIX
A.1 Extension of Puzzles On Vanish
An encrypted data object in Vanish [7] is essentially a tuple con-
sisting of a random access key L which is used to generate indices
where the shares of encryption key K are stored, Ciphertext (C),

Threshold (T , where T is the percentage of key shares required for
the successful reconstruction of K) and N as the total number of
shares K was split into.

The ideas described in this paper can be applied to Vanish. We
can have a puzzle that guards L. The attacker has to solve the puz-
zle first to get information about how to retrieve and save K . Note
that this does not defeat the successful attack on Vanish (Unvan-
ish) [26] which basically targets weaknesses in Vuze, the distributed
hashtable that stores the shares of K . Neither was this our intention
in the first place as our proposal does not fix the weaknesses of the
underlying schemes. Possible defenses against Unvanish are listed
in [6].

A.2 Related Work
We further describe related work more broadly: i ) general solutions
for the deletion of data and ii ) context as well as applications of
cryptographic puzzles.

Deletion of Data. Approaches for secure data deletion have
been investigated at multiple layers of abstraction [17]: from user-
level approaches [8], to deletion in file systems [18] and hardware
deletion techniques [25]. User behaviors wrt. deletion have been an-
alyzed for the Facebook OSN [16]. Orthogonal to these approaches—
and closer to our investigations—are techniques that focus on the
secure deletion of data by securely deleting a key that encrypts that
data in offline contexts. The encrypted data becomes infeasible to
recover without knowledge of the encryption key, given that com-
putational hardness assumptions hold for the encryption. Examples
include the early revocable backup system [2] as well as the secure
deletion in the YAFFS file system [12].

Applications ofCryptographic Puzzles. It has been suggested
that computational puzzles can be used to deal with Sybil attacks [13].
Vanish was mentioned as a system that could benefit from this as
it relied on a distributed hash table which could be infiltrated by
sybil nodes [26]. But the suggestion was to add these puzzles to
the underlying architecture, DHT in Vanish’s case. In our setting,
we consider a different setup where puzzles are included inside the
data objects. We are not making any changes to the underlying
public infrastructures and we are not trying to defend them against
exploits. We are trying to solve the problem where the attackers
abuse the data object itself. Also, they use a puzzle and solution
verification process that is distributed in nature and do not rely on a
central server or completely different third party for verification of
work done. However, their scheme is still very different from ours
as it deals with a system where the aim is to bar entry of dishonest
nodes who will not solve puzzles. The nodes are supposed to solve
puzzles periodically and send the solutions to other nodes for ver-
ification. In contrast, we propose a self-decrypting/self-verifying
scheme which means that there is no communication cost.

Cryptographic puzzles have been proposed and investigated in
further contexts [11, 23]. The ideas by Stebila et al. in [23] are mostly
applicable to scenarios in which server and clients are communicat-
ing, which is not the case for us. They also observe that a puzzle is
’strong’ if an adversary takes n amount of time to solve a puzzle, for
30 puzzles the total time should not be less than 30n. In the spirit
of this observation we argue that caching results will not help the
adversary to do better as discussed in Section 6. Proposals such as
[11] need a verification of the solution step as an extra round of

http://www.iis.sinica.edu.tw/page/jise/2010/201001_03.html
http://www.iis.sinica.edu.tw/page/jise/2010/201001_03.html
https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years/
https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years/
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9


communication, which we cannot incorporate. Their main aim was
also to reduce the time for puzzle generation by exploiting a certain
class of keys where the private key was much smaller than the
public key, leading to less time spent on generation and verification.
They did not have any control over the time spent on solving the
puzzles. Our scheme on the other hand generates a puzzle fairly
quickly and does not need a separate verification step.

To the best of our knowledge, the idea to use puzzles to support
digital forgetting has not been investigated before. We demonstrate
that they can be used for making users do work in order to access
data objects that are tailor-made to be forgotten with the passage of
time, which allows to solve various problems and prevent attacks
for approaches that deal with digital forgetting.

A.3 Costs for Attacks on Facebook
Table 1 details the approximate number of required compute-optimized
EC2 C4.8xlarge instances and the corresponding daily monetary
costs for an attacker to take varied (one quarter, one half and whole)
snapshots of the photos uploaded on Facebook.

A.4 Integration in OSNs
We wrote a Firefox extension for Neuralyzer that worked with
textual content. By natural extension the proposed scheme in this
paper can be also turned into an extension that works on emails
and various social networks. If a social network limits the type of
file that can be uploaded, for example it does not recognize EDO
due to any factor or it only accepts files of a specific type that it
can verify before uploading, a user can upload the EDO to a cloud
storage and share the link on that social network instead.

Objects on a social network need to be accessed fast. We can run
background processes that keep decrypting and caching objects
before a user scrolls down to them to reduce the time delay. A
normal user is not looking to access even a hundred thousand
objects in a day. These background processes can, as the objects
flow into social media timelines, decrypt and cache them in the
users’ devices for a sensible period of time. We do recognize that
this will have some effect on the experience. But this might be for
now the price that we have to pay for enabling digital forgetting.
Specific studies can be conducted in the future as to how much
this affects user experience on an online social network or given
the option will people care enough to opt for it or can we make
compromises with respect to user experience if we move from the
domain of OSNs to emails etc.
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