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Abstract—Navigation services based on Global Navigation
Satellite Systems (GNSS) are essential for a wide range of global
applications, including ensuring the safety of aerial vehicles.
However, these GNSS signals (e. g., civilian GPS) are vulnerable
to jamming and spoofing attacks. To mitigate such threats,
we propose GridNet, a vision-based deep-learning technique to
counter GPS jamming and spoofing attacks on aerial vehicles.
GridNet uses visual devices (e.g., cameras) to determine geolo-
cation during such attacks by extracting geolocation from aerial
photos via a pre-trained neural network model. This non-invasive
approach does not modify existing GPS infrastructure, merely
relying on real-time visual data. Unlike other methods that focus
solely on attack detection, GridNet provides a countermeasure,
calculating geolocation data without GPS. We analyze the po-
tential applications and discuss the performance in different
flight environments. Experimental results show that GridNet
can extract geolocation data from real aerial photos, achieving
nearly 93% spoofing detection accuracy with a minimum average
geolocation error of 7.33 meters within 4ms on a ground station
server and 2.7ms on a typical UAV, respectively, offering a
practical anti-spoofing solution.

Index Terms—Aircraft and drone security, GPS spoofing at-
tacks, GPS jamming attacks, deep learning, CycleGAN.

I. INTRODUCTION

Satellite-based navigation has become indispensable in
modern aviation due to its critical role in ensuring safety,
efficiency, and reliability. Global Positioning System (GPS),
the most well-known and the first GNSS system, is widely
used as the primary means of acquiring accurate positioning
data and navigation information. It has allowed civilian users
to receive a non-degraded signal globally since 2000 [1]. Since
then, the aviation industry has relied strongly on GPS signals
for positioning, navigation, and timing (PNT) services.

However, GPS signals are highly vulnerable to spoofing and
jamming, even with low-cost commercial off-the-shelf (COTS)
SDRs such as a HackRF One [2]. GPS jamming attacks try
to block legitimate GPS signals or interfere with the target
victims to prevent them from receiving the signals from the
GPS satellites. GPS spoofing attacks send similar and more
powerful but counterfeit GPS signals to manipulate victims’
localization. Media reports concerning GPS attacks in aviation
include the well-known Iran-U.S. RQ-170 incident, where an
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American UAV was captured by Iranian forces near the city
of Kashmar in 2011 due to jamming satellite signals, followed
by a GPS spoofing attack [3]. One accidental jamming attack
near Newark Airport, New Jersey [4], and a spoofing attack
close to Kremlin, Moscow [5], were reported in 2012 and
2016, respectively. Those publicly known events reveal that
GPS attacks are no longer just theoretically feasible but are
happening in reality.

While cryptographic authentication methods [6] can miti-
gate GPS spoofing, they typically require hardware modifica-
tions to the receiver and cannot counter jamming attacks that
deny access to signals entirely. GPS navigation recovery is in-
feasible when attackers can null or jam the authentic signals to
the point where they are unrecoverable. Furthermore, in GPS-
denied areas (e. g., military zones, valleys, and urban canyons),
getting authentic GPS signals is almost impracticable, let alone
recovering them. Alternative navigation systems relying on
optical flow or inertial sensors often suffer from reliability
and accuracy issues, particularly over long durations [7].

Recently, vision-based navigation has gained increasing
attention as a promising alternative. However, researchers still
encounter several practical challenges. First, aerial images
of the target area may be unavailable for training purposes.
This leads to a lack of sufficient data on target operating
airspaces to train neural network classifiers. Unlike satellite
images that provide global coverage, aerial photos typically
do not achieve large-scale coverage (e. g., city-level), at least
they are not publicly available. Second, although both aerial
and satellite images are known as remotely sensed images,
the two techniques for creating images differ. Essentially,
satellite images generally cover a much wider area, whereas
aerial photos are taken at a lower altitude, and thus cover
a smaller area. In addition, different photography equipment
configurations also have a great impact on photos. Such factors
lead to fundamental differences between satellite images and
aerial photos in features such as resolution, rotation, angle, and
color features (e. g., hue, saturation, and brightness). Third,
compared with satellite images that may have been captured
years ago, aerial images are taken in real time. As a result,
transient phenomena, such as seasonal vegetation, weather,
people, vehicles, and light, vary greatly at different times.
These variations should not be considered as a basis for
localization. Finally, deep neural networks have achieved great



success in image classification tasks; however, how to properly
balance the trade-off between model accuracy and complexity
and carry it out in a timely fashion on a resource-constrained
UAV platform remains an open problem.

Therefore, there is a critical need for a robust vision-
based anti-spoofing system that does not require access to
live GPS signals. In response to these challenges, we design
and implement GridNet, a technique that allows a camera-
equipped UAV to (1) detect spoofing attacks based on aerial
photos and (2) determine its location in the absence of
(legitimate) GPS signals. Our approach is inherently resistant
to attacks on wireless signals. By dividing the target area
into a grid structure composed of rectangular cells, each
individual grid unit is referred to as a “grid cell”. Our key
idea is to exploit robust deep learning visual features in aerial
images taken by an onboard camera to locate the aircraft. In
essence, GridNet leverages the natural features (e. g., rivers,
roads, buildings, etc.) of the landmarks on the earth and
maps them with a specific grid cell on a specified satellite
map to geolocation (i. e., latitude, longitude). This approach
maintains high performance even when the aerial images
of the target area are lacking. In addition, we adopt Cycle
Generative Adversarial Network (CycleGAN) [8] to mitigate
the challenge of the difference between aerial and satellite
images. Meanwhile, to address the challenge of deploying
models on resource-constrained UAV platforms, we design a
balanced trade-off between model accuracy and computational
complexity. The experimental results of the real scenario
show that the accuracy, precision, recall, and F1 score of
GridNet under various challenging conditions all surpass 90%,
demonstrating its practicality for real-world applications. The
main contributions of our paper are as follows:
• To our knowledge, this is the first work that employs

GAN-based methods to derive geolocation solely from UAV
images. This strategy circumvents the need to collect aerial
training images from the target geographic area.

• We design a lightweight, deployable on-board anti-spoofing
system for UAVs, achieving a balanced trade-off between
model accuracy and computational efficiency.

• GridNet is a standalone localization system and is a poten-
tial alternative to GNSS. We analyze its localization error
through theory and experiments. The experiments show that
we achieve an average localization error ranging from 7 to
36 meters, depending on flight setting and grid resolution.

The code and models are publicly available at https://
github.com/Goldgaruda/GridNet.

II. PRELIMINARIES AND RELATED WORK

This section provides background on GNSS attacks and
countermeasures, prior work, and key techniques for GridNet.

A. GNSS Overview and Security Challenges

Global Navigation Satellite Systems (GNSSs) refer to satel-
lite constellations that emit signals from space and send PNT
data to ground-based receivers. Widely used GNSSs include
the U.S. GPS, Russia’s GLONASS, China’s BeiDou, and the

European Union’s Galileo. Due to the lack of signal encryption
and authentication in civilian systems, GNSS signals are
vulnerable to attacks such as jamming and spoofing. Jamming
involves transmitting interference signals to block or distort
GNSS signals, causing receivers to lose lock on satellite trans-
missions. For instance, GPS signals are weak (approx. -160
dBW [9]), making them susceptible to noise-based disruption,
which may lead to UAV crashes [10]. Spoofing, by contrast,
involves broadcasting fake signals that mimic GNSS signals
at higher power levels, causing receivers to calculate incorrect
positions [11], [12]. Hybrid attacks combine jamming and
spoofing, making them harder to defend against.

B. Countermeasures against GNSS Attacks

Traditional countermeasures, named GNSS Electronic Pro-
tection Measures (EPM), operate in time, frequency, and spa-
tial domains [13]. Cryptographic protection of navigation mes-
sages can mitigate spoofing but has high overhead and does not
prevent replay attacks [14]. Non-cryptographic methods, such
as hardware-assisted solutions [15] and crowdsourcing-based
detection [16], require additional hardware or cooperation
from multiple participants, and they only detect spoofing
without recovering geolocation information. More details can
be found in [13], [17]. Due to the wide variety of UAV
models and lack of production standards, scalable and easily
adaptable spoofing detection methods are needed. We propose
a vision-based approach without relying on GPS signals,
thereby simplifying the system’s creation and implementation.

C. Prior Work

UAVs depend on vulnerable civilian GPS for navigation,
making them prone to spoofing and jamming. For example,
in urban environments, GPS performance deteriorates due
to occlusion and interference, especially in urban canyons.
Countermeasures are typically classified into signal-based and
out-of-band methods.

Signal-based methods, like cryptographic techniques [18],
authenticate GPS signals but remain vulnerable to replay at-
tacks [14], and need infrastructure upgrades. Alternative signal
anomaly detection approaches, while theoretically effective,
demand specialized instruments that are unsuitable for UAVs.

Out-of-band techniques use environmental and system in-
formation to cross-validate navigation data. Visual information
[19], optical flow [20], and IMU [21], provide extra sources for
detection. IMU-based methods utilize raw measurements for
drift-prone relative position estimation [21], but lose accuracy
over time due to integral drift [22]. Visual sensors like cameras
assist UAVs in maneuvering and providing real-time video
feeds. Early optical flow-based methods lacked precision [23],
and feature matching methods like SIFT and ORB failed due
to viewpoint differences [24]. Recent deep learning methods
are robust but require maps [13], [25]. Our mapless GridNet
detects spoofing and jamming attacks using one input without
maps, providing real-time use on resource-limited vehicles.
Comparisons with recent vision-based deep learning methods
are summarized in Table VI.

https://github.com/Goldgaruda/GridNet
https://github.com/Goldgaruda/GridNet


D. Key Techniques for GridNet

Deep Neural Networks (DNNs), particularly CNNs have
revolutionized computer vision (CV). CNNs enables auto-
matic feature extraction from raw pixel data, achieving break-
throughs in CV tasks [26]–[28]. In this work, we adopt a
vision-based deep learning approach to counter jamming and
spoofing threats in aviation. We employ CNN-based DNNs
within GridNet for aerial image classification due to their
independence from prior knowledge and human intervention.

To address the domain shift between UAV and satellite
imagery, we adopt CycleGAN [8], an unsupervised image
translation model that learns without paired samples and
supports domain adaptation. It transfers input images into the
target style and is widely used in satellite image enhancement.
In this paper, we use CycleGAN to map UAV aerial photos to
satellite-style images, effectively bridging the domain gap.

III. ADVERSARY MODEL

We assume a strong adversary capable of launching three
kinds of GPS attacks: (i) jamming attacks, (ii) spoofing
attacks, and (iii) hybrid attacks. All attacks can be achieved
with purpose-built hardware (i. e., GPS satellite simula-
tors), using general-purpose Universal Software Radio Pe-
ripherals (USRPs) [29] and corresponding software packages
(e. g., gps-sdr-sim), or even cheap SDR hardware plat-
forms [30]. In all cases, amplifiers will be needed. We make
the standard assumption [6] of an attacker being able to jam
and spoof GPS signals that affect the victim’s capability to
acquire legitimate GPS signals and its capability to determine
its real-time location. The number of attackers may range from
a single adversary to multiple collaborating adversaries who
can conduct complex and flexible attacks. More importantly,
we consider the extreme case that the authentic GPS signals
are completely compromised and cannot be recovered by any
signal-based method.

Furthermore, we assume that the attacker is able to not only
jam the GPS signals but also jam the communication chan-
nel (e. g., OFDM and WiFi) between the UAV and the ground
station (e. g., by a drone jamming gun or a drone defender).
As a result, typical existing communication channels between
the UAV and the ground station may be cut off.

We restrict the attacker’s capabilities with respect to the
knowledge about the used ML models: we assume that the
attacker does neither have access to the neural network clas-
sifier/model used in GridNet nor to the used parameters.
For example, the Fast Gradient Sign Method (FGSM) [31]
can mislead geolocation predictions by adding imperceptible
perturbations to aerial photos. We also assume that the attacker
is not able to artificially make topographic changes (e. g., high-
way alignment, river flows, building layout) of the operating
area during the flight planning and operation.

IV. GRIDNET APPROACH

We propose GridNet to detect GPS spoofing attacks on
UAVs and to recover the UAV’s physical location under such
attacks. Moreover, GridNet can also operate in GPS-denied

Fig. 1: Overview of GridNet offline phase. The top part shows
an input aerial photo transferred to satellite-like images using
a trained CycleGAN. The bottom part exhibits satellite images
classified into a corresponding grid by a deep neural network.

airspace to assist with navigation. To achieve this, the key
idea is to geolocate the UAV without relying on GPS signals,
which may have been completely compromised by attackers.

A. Design Overview of GridNet

The GridNet system consists of a UAV equipped with at
least one visual sensor, a ground station, and communication
channels between them. In addition, there are three major
components: a CycleGAN, a deep neural network classifier,
and a location extraction module (as explained in Sec. IV-B)
installed on the UAV or the ground controller, depending
on the setup (installing them on the UAV makes GridNet
independent of an active communication channel between the
UAV and the ground station).

In practice, the proposed method can be divided into an
offline phase for training and an online phase for operations.
Offline Phase. In the offline phase (see Fig. 1), we train
a CycleGAN using unpaired aerial photographs and satellite
images to translate aerial photos into satellite-style images.
These translated images are then used to train a classifier
for satellite image classification tasks. The training process
of CycleGAN is the same as [8] and is not elaborated here.
This technique is useful for operating areas where no aerial
pictures are available for training and where no satellite map
is needed/required during the online/execution phase.
Online Phase. During the online phase, the UAV operates
in an unvisited area where satellite imagery is available. The
classifier and CycleGAN, trained during the offline phase, can
be deployed either on the ground station—as an alternative
to GPS-based localization in the absence of GPS attacks—
or on the UAV’s onboard computer (OBC) to counteract
GPS attacks. The advantage of an on-board deployment on
the UAV is the independence of the UAV’s operation from
a possibly jammed communication channel. The live aerial
photos or the frames extracted from the video taken by the
UAV are transferred to satellite images using CycleGAN and
then fed to a pre-trained classifier and a location extraction
module to obtain the geolocation information (see Fig. 2).
The extracted geolocation can then be cross-checked with the
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Fig. 2: Overview of GridNet online phase.

calculated geolocation from GPS signals (under spoofing) or
assist navigation (under jamming).

Once the communication link between the UAV and the
ground station is disrupted by an attacker, the on-board model
is activated. By using the geolocation extraction function, the
victim may move to safe airspace or return home. Many UAVs
will land directly by default once the GPS signals are lost, and
there is often no backup navigation for UAVs. As a result, an
attacker can easily capture a UAV by cutting off the GPS
signals—a special attack that GridNet is designed to mitigate.

B. Detailed Components of GridNet

1) CycleGAN Domain Transfer from Aerial Photos to
Satellite Images: As mentioned earlier, the core objective of
GridNet is to train a classifier that can later be used to extract
a UAV’s geolocation. In general, training a high-performance
classifier is a well-established process. However, in real-life
scenarios, the aerial photos captured by UAVs that would
be needed for training the classifier are often unavailable
beforehand. It is, in contrast, easy to get satellite images of the
target area in advance. Nevertheless, if we train our classifier
using training data solely on satellite images (i. e., the source
domain) and then use the classifier to do classification tasks for
aerial photos (i. e., the target domain), it will inevitably lead
to degraded performance. The root cause is that the training
data and the test data are not in the same feature space, and
thus have different distributions.

Previous methods, such as [32], [33], primarily focus on
learning image-to-image mappings from aligned training im-
age pairs. However, in the context of UAVs, acquiring aerial
imagery of the target area beforehand is often infeasible. More-
over, paired satellite-aerial images of a target area required for
supervised training are typically unavailable.

To address this challenge, we employ CycleGAN to bridge
the domain gap between aerial photos and satellite images. The

objective of CycleGAN in GridNet is to learn a mapping func-
tion between two domains A (i. e., aerial photos) and B (i. e.,
satellite images) given unpaired training samples {xi}Ni=1 ∈ A
and {yj}Mj=1 ∈ B. The CycleGAN model consists of two
mappings: GAB : A → B and GBA : B → A. Besides,
discriminator DAB is proposed to discriminate between y
and GAB(x). Conversely, discriminator DBA distinguishes
real aerial photos x from A and generated fake aerial photos
GBA(y).

We apply the CycleGAN loss function [8]:

L = LAB (GAB , DAB , A,B) (1)
+ LBA (GBA, DBA, B,A) + λLcyc (GAB , GBA) ,

where LAB and LBA are two adversarial losses [34] of map-
ping functions, namely, GAB : A → B and GBA : B → A,
respectively. Lcyc is the cycle consistency loss [8], which
guarantees that the generated output image is actually a version
of the input image. λ is the control parameter of the relative
importance of cycle consistency loss and adversarial losses,
which is determined by a joint Bayesian optimization on
parameters in [35], [36].

The aim is to solve the following equation:

GAB , GBA = argminmax
GAB ,GBA

L (GAB , GBA, DAB , DBA) , (2)

which is a min-max optimization function where the genera-
tor G wants to minimize the objective function, whereas the
discriminator D tries to maximize it. By optimizing the above
function, we can finally use the generator GAB to transfer the
real-time aerial photos to satellite images, which are fed to the
classifier afterward.

2) Grid Classification by Deep Learning: We pursue grid
classification for localization in three steps.

First, we define an operating area for the UAV and extract
the target satellite images from public resources such as
Google Earth, Google Maps, NASA WorldWind, or Mapbox.



The operating area can be defined broadly, as it is better to
overestimate than to underestimate the area; it will, however,
be limited by the coverage range of the UAV.

Second, we divide the satellite map of the operating area
into regular grid cells, where each grid cell has its own latitude
and longitude. For the sake of simplicity, we assume that the
geolocation of the centroid of each grid cell represents the
coordinates of the cell itself. The target area can be divided
into different numbers of cells according to precision and
efficiency requirements.

Third, we regard each grid cell as an independent class and
train a neural network to classify them. As a result, we are
able to construct a mapping between the grid cell and the
corresponding coordinate. The classification neural network
plays a core role in GridNet as we use it to classify each
cell to the corresponding location class. The neural network is
comprised of node layers, containing an input layer, a series
of hidden layers, and an FC output layer. Immediately after
the last FC layer, the output is fed into an n-way Softmax,
which produces a normalized probability distribution over the
M class predicted labels; M is the number of classes of the
grid cell. By applying the various filters in each convolutional
layer to an input image, the input image is abstracted into a
feature map by the convolutional layers. These feature maps
can be used to determine the class of each input cell image.

3) Location Extraction Module: To calculate the latitude
and longitude of a specific grid cell, we first need to determine
the coordinates of the target satellite bounds. In fact, most
satellite map tools support this function of extracting the
coordinates of a specified area. We assume the target area
is A with known GPS bounds. Let the latitude and longitude
of the upper left corner of A be (lons, lats) and the lower
right corner of A be (lone, late), see Fig. 3.

Fig. 3: Illustration of a grid cell location. Here m = 11, n = 8.

For the sake of simplicity, we assume that the area is in the
northern hemisphere, and we regard the geolocation of a point
in the center of the grid cell as the corresponding cell’s latitude
and longitude. The coordinate system starts at (0, 0), i. e.,
(horizontal number, vertical number) in the upper left corner
and proceeds right (horizontal) and downward (vertical). In
addition, we assume that the last cell ends at (m,n), which
means that the satellite map is divided into m × n grids.
Suppose that a certain grid cell g resides at A. Therefore, it is
possible to figure out the cell g’ GPS coordinate (long , latg)
by knowing its coordinate (x, y) and the extent or bounds of
A such as lons, lats, lone and late using Equations 3.

{
long = lons +

(lone−lons)
2m + (lone−lons)

m x

latg = lats − (lats−late)
2n − (lats−late)

n y.
(3)

To locate the grid cell from aerial photos taken by aircraft
(e.g., UAVs, commercial flights), we use pre-trained deep
neural network classifiers to classify aerial photos into the
corresponding satellite grid cell. Since each cell corresponds
to a geographical position, we can calculate its geolocation.
Of course, the precision will depend on the granularity of the
cell and the accuracy of our neural network. We can balance
precision and complexity according to different scenarios and
requirements. Generally, the more cells we divide the area into,
the more precise location results we can get, however, at the
cost of efficiency, complexity, and prediction accuracy.

C. GridNet Benefits

Advantages. As an out-of-band method, GridNet is inherently
immune to GPS jamming and spoofing attacks. It can inde-
pendently derives geolocation information from aerial photos
rather than GPS signals. Then we are able to leverage the
extracted geolocation data produced by GridNet, possibly
cross-checking them with GPS data to identify discrepancies.
By setting an appropriate threshold, we can also detect spoof-
ing attacks. Additionally, the estimated location data can be
used to support navigation tasks such as Return to Home
(RTH). Notably, our method does not require the operation
area’s aerial photos in advance, nor does it necessitate storing
satellite maps onboard or at the ground station. Furthermore,
our approach is also robust regardless of the number or
configuration of adversaries.
Comparison to Related Methods. In comparison with
cryptography-based countermeasures for aircraft [18], GridNet
offers a non-invasive approach that requires no modifications
to existing GPS protocols or infrastructure. Compared with
hardware-assisted solutions [37], our solution is software-only.
These hardware-assisted methods have been demonstrated to
be effective, but usually need specialized hardware to analyze
the physical features of signals (i. e., signal powers, wave-
forms, and Doppler frequency). Unlike crowdsourcing-based
methods [16], GridNet operates independently without re-
quiring cooperation from others. Additionally, crowdsourcing-
based methods will inevitably lead to privacy concerns of the
participants due to information exchange. In contrast with
recent AI-based means [32], [38], neither paired data are
required during the training phase, nor are satellite images
stored in the detection phase. Moreover, unlike most existing
approaches, which are merely for spoofing detection, Grid-
Net is also suitable for aircraft under jamming or in GPS-
denied environments. Finally, considering the fact that most
drones have been already manufactured with cameras [39],
our approach is easily deployable and backward compatible
and can be quickly implemented in practice. In real scenarios,
GridNet can be deployed in two configurations: (1) on the
remote controller at the ground station or (2) on the on-board
computer (OBC) of the UAV. For enhanced security, the OBC-
based deployment is preferred as the derivation of geolocation



information is independent of an active communication link
between the UAV and the ground controller.

V. EXPERIMENTAL VALIDATION

To evaluate the applicability of GridNet in real-world sce-
narios, we assess its performance in terms of classification
accuracy, geographical coordinates error, and inference speed.

A. Dataset Description

1) Aerial Photos: There are no existing freely available
datasets that include both satellite image grid cells and the
corresponding aerial photo grid cells or baseline implemen-
tations. To demonstrate proof of concept, we had to collect
aerial photos by ourselves. All aerial photos are captured using
a DJI MATRICE 300 RTK equipped with a ZENMUSE P1
Photogrammetry Camera. The UAV operated at a flight altitude
of 150 meters over a mixed urban–suburban environment. All
photos were taken on a sunny, cloud-free spring day. As a
result, the geospatial textures, such as rivers, cropland, and
landmarks such as buildings and roadways, could be captured
clearly. In total, the dataset covers an area of 2.52 km2. We
generated orthomosaic maps from aerial photos to showcase
the capabilities of our system. Note again that we only use
aerial photos for test purposes, not for training the classifier.

2) Satellite Images: To prepare the training data, we down-
loaded the georeferenced satellite images from Google Earth
in the corresponding area. To get the satellite maps of the
target area, we overlap the generated aerial orthomosaic maps
with precise geolocation data in Google Earth. By doing
so, we can get satellite maps with perfect alignment and
the same coverage as the aerial photo. However, merely one
satellite map is not enough to train a robust model that can do
classification tasks instead of forcibly remembering a specific
grid. Such a model trained on a few data points would result in
low generalization ability. Hence, we additionally downloaded
satellite maps captured at different times, and in total, we got
eleven historical satellite maps in the same area. Since these
satellite maps were taken at different times, some variations of
the maps, including seasonal changes, weather patterns, and
lighting differences such as shadows, can enrich our training
samples, making our models more general and robust.

B. Experimental Environment Setup

Both CycleGAN and classification models were trained on
a server equipped with a single NVIDIA A100 Tensor Core
GPU with 40GB of GPU memory. The CPUs on the server
are dual Intel Xeon(R) Gold 5220R @2.20GHz. In addition,
for the testing phase, we deployed our models on two real
UAVs and a Raspberry Pi 3B+ with a Cortex-A53 @1.4GHz
CPU and 1GB of memory. A typical UAV platform uses an
Intel NUC 5 i7-8559U CPU with 16GB of memory. The other
is more powerful with an Intel NUC 11 Enthusiast i7 CPU
@2.8GHZ, 64GB memory, and a graphics processor (Geforce
RTX2060).

The GPU server runs a 64-bit Red Hat Enterprise Linux
release 8.5, while the Raspberry Pi has a 64-bit Ubuntu

18.04 system. The weak and the strong UAV platforms run
Ubuntu 16.04.7 LST and Ubuntu 20.04.3 LST, respectively.
All experiments were implemented in Python with PyTorch
1.11.0 as the deep learning framework. CUDA and cuDNN
are installed on the server to speed up both the training
and inference of neural networks. While training and testing
processes were conducted on the server, the Raspberry Pi
(which lacks GPU support) and the two real UAV platforms
were used only for inference during the testing phase.

C. Implementation Details

For training both CycleGAN and the classifier model, we
use Adam as the optimizer, and set β1 = 0.9 within 150 epochs
and β1 = 0.5 for the remaining epochs, and β2 = 0.99. We
set the initial learning rate to 2e-4, and adjust the learning rate
schedule as proposed in [35].

1) Train CycleGAN: We adopt the CycleGAN architecture
[40] for the domain adaptation task, owing to its compact
design (only 10.5 MB) and satisfactory performance. The
generators include nine residual blocks, two downsampling
and two upsampling layers with stride-2 convolutions. The
generator takes an input image, downsamples it, and then
upsamples it back to the original resolution to produce a trans-
lated output. The discriminator employs four downsampling
layers and outputs a scalar score. A higher value indicates
a real image and a lower value indicates a fake one. The
training data consist of unpaired grid cells extracted from
satellite and UAV images and do not need to originate from
the same geographic region. The batch size is set to 2, and
the CycleGAN is trained for 1000 epochs. All weights are
initialized using a normal distribution.

2) Train the Classifier: All grid cell images are resized
to 128 × 128 resolution as a trade-off between the efficiency
and accuracy of satellite image classification. The satellite
image dataset containing 5,720 samples is randomly split into
training and validation sets using StratifiedKFold strategy at a
ratio of 10:1 to preserve the percentage of samples per class.
The training process is run for 500 epochs.
Online Data Augmentation. One of the most widely adopted
techniques for training high-performance and robust deep
neural networks is data augmentation. Although our dataset
contains 11 satellite maps at different times, such an amount is
still insufficient to fully represent diverse real-world conditions
such as rotation, distortion, blurring, illumination changes
(darkening or brightening), color shift. To address this, we
apply various data augmentation techniques during training,
using the Albumentations library in Python. Standard
augmentations include random flipping, blurring, rotation and
cropping. Fig. 4 shows the images after the additional data
augmentation beyond the Albumentations library. The
color augmentation shuffles RGB channels and flip values in
each channel randomly, the affine augmentation uses OpenCV
to implement a random 3D affine transformation followed by a
Gaussian filter to blur the image randomly, and the darkening
augmentation reduces the luminance level with a random
scale followed by quantization noising. These augmentations,



Fig. 4: Examples of online augmentations.

when combined, dramatically enhance the training data vari-
ations and increase the classification accuracy by about 10%
compared to merely using the standard Albumentations
operations according to preliminary experiments.
Pre-trained models. There exists a wide range of backbones
architectures for deep learning models. Based on preliminary
experiments, we selected 9 state-of-the-art networks: ResNet-
50 and ResNet-101 [26], MobileNetV2 [41] and V3 [42],
Eca nfnet l2 [43], and EfficientNet series (b3, b4, b5, b6)
[44]. Pre-trained models have demonstrated strong perfor-
mance in general image classification tasks, while ever fewer
top-performing approaches use networks trained from scratch.
In this paper, in order to speed up the learning process and
reduce the training time, we use the models of each selected
network pre-trained on the large-scale dataset, i. e., ImageNet,
and then fine-tune them on our own datasets.
Loss function. In our classification model, we adopt cross-
entropy loss combined with label smoothing to optimize model
weights during training. The objective is to minimize the loss
in optimization and thereby improve model accuracy . Label
smoothing acts as a regularization technique that can prevent
the network from becoming over-confident and trapped in
sharp minima of the loss landscape where overfitting is likely
to occur. It regularizes a model based on a Softmax with
n output values by replacing the hard 0 and 1 classification
targets with targets of ϵ/M and 1−ϵ(M − 1)/M respectively,
where ϵ is a weight factor, ϵ ∈ [0, 1]. The label smoothing
equation is defined as yls = (1− ϵ) yhot+ϵ/M where M is the
number of grids in the training dataset, and yhot is the ”hard”
one-hot label vector. We further integrate the classification loss
to smooth/improve the solution and alleviate the effects of the
too-hard examples. The classification loss is implemented with
the Softmax function, which is defined as

LSoftmax = − 1

N

N∑
i=1

log
efyi∑M
j=1 e

fj
, (4)

where fyi
= WT

fyi
xi, xi is input vector and W denotes the

1× 1 convolution weights for Softmax.

VI. PERFORMANCE EVALUATION

We split the evaluation of the proposed GridNet into
(i) evaluating the performance of grid classification, (ii) ana-

lyzing the impact of parameter settings, (iii) investigating the
errors, and (iv) estimating online time complexity on different
UAV environments.

A. Performance of Grid Classification

Classification accuracy is a key metric in GridNet, mea-
suring how accurately GPS coordinates can be extracted. In
essence, the goal is to find a grid cell whose longitude and
latitude are the closest to the ground truth, thereby accurately
localizing the UAV. We report the performance of selected
models in terms of accuracy, parameter number, GFLOPs,
inference time, and model size. We report the accuracy of
each model on three different test sets, i. e., validation set (Val
Acc.), which are all satellite images, UAV test set (UAV
Acc.), which contains real UAV images, and the third test
data set (CycleGAN+ Acc.)., which is generated from UAV
test using a well trained CycleGAN. We observe that all
neural networks perform better on the dataset generated from
CycleGAN compared with the original UAV set, ranging from
about 1% to 10%, respectively. Overall, EfficientNet-b5ns
achieves the highest classification accuracy (approx. 93%)
while mobileNetv2 has the smallest size and the shortest
inference time. Notably, mobileNetv2-b3 offers a favorable
trade-off between accuracy and efficiency. All experimental
results are summarized in Table I.

B. Impact of Different Parameters

Impact of area size. To investigate the impact of different
area sizes, we trained another two classifiers using the same
neural network model (i. e., EfficientNet-b5ns), but on smaller
areas: 1.26 km2 and 0.63 km2, respectively. Correspondingly,
the number of grid cell classes was reduced from 520 to 260
and 130, respectively. Experimental results regarding different
area sizes are summarized in Table II. Intuitively, as the
number of classes decreases, the classification task becomes
less complex. We observed that the classification accuracy
improves slightly with a decreased area. In all cases, the best
performance is achieved on the smallest area.
Impact of grid cell numbers. We divide the target area
into different cell numbers to evaluate the impact of grid
resolutions on the same area. Here we consider three different
types of divisions, namely, 130, 520, and 2080. In the same
place, as the numbers of grids grow larger, the pixels contained
by each grid image become fewer. In our experiment, the
resolutions of the images are set to 256×256, 128×128, and
64×64. As a result, we get 130, 520, and 2080 cells, re-
spectively. We present results showing the impact considering
grid numbers and image resolutions in Table III. On the
one hand, surprisingly, our model achieves 100% prediction
accuracy when using 130 cells, as an optimum setting; on
the other hand, the performance drops significantly when the
number of grids increases to 2080, achieving only approx.
60% accuracy. The reasons for this are twofold. First, as the
number of classes increases, the classification task becomes
more difficult. According to [45], current SOTA models’ top-1
accuracy on ImageNet (containing 1000 categories and more



TABLE I: Performance comparison on validation, UAV and CycleGAN+ datasets using different neural network models.
Model Val Acc. UAV Acc. CycleGAN+ Acc. #Param.(M) GFLOPs Inference time (ms) Model size(MB)

EfficientNet-b4ns [44] 0.894 0.844 0.904 18.5 0.50 3.09 71.2
EfficientNet-b5ns [44] 0.907 0.873 0.929 29.4 0.79 3.35 113.1
EfficientNet-b6ns [44] 0.883 0.827 0.921 41.9 1.12 3.51 161.1
Wide ResNet50 [26] 0.850 0.844 0.854 68.9 3.74 3.22 267.2
Wide ResNet101 [26] 0.871 0.858 0.883 126.9 7.45 3.51 488.9
MobileNetv2 100 [41] 0.831 0.861 0.875 2.9 0.10 2.31 11.2
EfficientNetv2-b3 [44] 0.896 0.877 0.919 13.6 0.53 2.85 52.5
MobileNetv3 large 100 [42] 0.869 0.864 0.902 4.9 0.08 2.43 18.7
Eca nfnet l2 [43] 0.869 0.879 0.885 56.6 3.32 3.88 222.0

TABLE II: Impact of area size.
Area size #Grid Accuracy Precision Recall F1 Score

2.52 km2 520 0.929 0.899 0.929 0.908
1.26 km2 260 0.939 0.913 0.939 0.921
0.63 km2 130 0.946 0.919 0.946 0.929

than a million images) is no more than 91%. Second, high
resolution tends to achieve higher accuracy in general since
such images contain more visual information than the ones
with fewer pixels [44].

TABLE III: Impact of grid cell numbers.
#Grid Resolution Accuracy Precision Recall F1 Score

130 256×256 1.000 1.000 1.000 1.000
520 128×128 0.939 0.913 0.939 0.921
2080 64×64 0.606 0.501 0.606 0.530

Fig. 5: Cases of various flight conditions.

Impact of weather, lighting, and occlusion conditions. We
investigate how changes in weather, lighting, and occlusion
affect the performance of our models since the training images
are primarily captured under clear, daytime conditions. Severe
conditions are common in the real world, and aerial vehicles
may need to perform tasks under such extreme conditions.

Recent studies [38], [46] only focused on the impact of
lighting changes, such as sunrise and sunset. To evaluate
our EfficientNet-b5ns model under conditions of fog, cloud,
rain, snow, and shadow, which are challenging tasks, we use
the Albumentations and OpenCV libraries to synthesize
images corresponding to such weather conditions.

To simulate photos in the night environment, we employ
CycleGAN again since we lack night UAV photos of the
target area for training and testing. We trained a specialized
CycleGAN on the HIT-UAV dataset [47], which contains
infrared thermal UAV photos. This allows us to transfer our
UAV photos taken during the daytime to infrared UAV photos
at night. Consequently, UAVs equipped with infrared thermal

cameras can potentially operate effectively under low-light or
nighttime conditions.

To simulate photos in the occlusion condition, we imple-
mented the Random Erasing technique. In this approach, we
randomly mask parts of real images with a probability of
0.5, simulating cases of partially deformed or blurred areas
in the dataset. The masking is done by erasing a portion of
the image, and the size of the erased area is determined by
random proportions within a certain range. We also control the
aspect ratio of the erased area to introduce variability in the
occlusion effect. If we fail to find a suitable erasing region after
maximum attempts, the image remains unaltered. We applied
this technique to a set of test images, synthesizing a dataset
of photos with simulated occlusion.

We first evaluated our general model, trained on a dataset
from sunny days, using the generated datasets. Examples are
displayed in Fig. 5, and the results are shown in Table IV. It
is evident that the general model performs well under snow
and shadow conditions without drastic performance reduction,
whereas fog, rain, cloud, night, and occlusion conditions
lead to accuracy degradation. To improve the practicality
of GridNet even in extreme conditions, we trained domain-
specific models for each weather and lighting condition using
synthetic training data. We observed significant improvements
in domain-specific models over the general model under all
conditions. However, the cloud domain model still struggles
since the cloud-occluded images tend to lack salient visual
features. For best practice, the model option can be config-
ured according to different conditions before the UAV starts
navigation, while a low operating height can be set in case of
clouds to avoid failure.

C. Error Analysis of Extracted Geolocations

Firstly, the GridNet framework exhibits robust immunity to
jamming and spoofing attacks, as its vision-based approach
eliminates dependence on GPS signals. To evaluate the ac-
curacy of metric localization using GridNet, we show both
theoretical analyses and empirical error measurements.

TABLE IV: Comparing the accuracy of the general models
and domain models under different conditions.

Model\Condition fog cloud rain snow shadow night occlusion

General Usecase 0.300 0.135 0.387 0.771 0.815 0.419 0.383

Domain Specific 0.662 0.379 0.815 0.839 0.889 0.896 0.702



Theoretical Analysis. Suppose that the target area is a rectan-
gular region with length and width [0, L]×[0,M ], which is di-
vided into l×m grid cells. For each cell ajk = [(j−1)Ll , j

L
l ]×

[(k − 1)Mm , kM
m ], and the coordinates of the center of the

grid are ( 2j−1
2

L
l ,

2k−1
2

M
m ). As ground truth, we assume that

we have access to an oracle (here the neural network model)
that can answer the grid classification problem correctly with
p accuracy (0 < p ≤ 1). It means that the probability of
successfully predicting a certain grid class is p, and thus, the
probability of being wrong is 1−p. If the prediction is wrong,
the probability of predicting to another grid is equal, which
is 1−p

lm−1 . In addition, the oracle can only give the coordinates
of the center point of the predicted grid. Assume that the real
position of a UAV is at (x, y) ∈ aj∗,k∗ , the mean value of the
distance errors between the real coordinates and the predicted
coordinates is:

d = p

√(
x− 2j∗ − 1

2

L

l

)2

+

(
y − 2k∗ − 1

2

M

m

)2

(5)

+
1− p

lm− 1

∑
(j,k)∈D

√(
x− 2j − 1

2

L

l

)2

+

(
y − 2k − 1

2

M

m

)2

where D = {1, . . . , l}×{1, . . . ,m}\{(j∗, k∗)} represents all
cells except aj∗,k∗ . The first term is the distance to the center
of the correct grid, weighted by p, and the second term is
the average distance to the centers of all other cells, weighted
by the probability of an incorrect prediction. For a fixed cell
aj∗,k∗ , d is maximized when (x, y) is at the cell’s corners. For
a perfect model (p = 1), the error reduces to the first term in

Equation 5, with an upper bound of T1 =

√(
L
2l

)2
+

(
M
2m

)2
,

the maximum distance from any point in a cell to its center.
To detect a spoofing attack, we need to perform a cross-

check between the GPS reported positions and the estimated
position from GridNet. We verify each incoming position to
see if dist(d, d̂)<T1 holds, where d is the position reported
by GPS, d̂ is the extracted location extracted using GridNet,
dist() is the Euclidean distance function, and T1 denotes the
upper bound error, which is determined by the height and
width of the grid. Note that if the manipulated position is
within the grid, there is no way to know if it is being attacked
through GridNet. In practice, we need to balance the trade-
off between accuracy and precision. Because the prediction
accuracy decreases as the number of grids grows. Ideally, the
spoofing detection rate is the model’s prediction rate regarding
the grid classification.
Simulation Test. To evaluate the localization error in prac-
tice, we designed simulation experiments containing flight
trajectories and random position estimation. For the trajectory
simulation, we designed two paths, one from west to east and
another from north to south. We assume that a UAV traverses
the operating area at a uniform speed and takes aerial photos
periodically when flying. We make sure it takes a picture of
each grid as it passes by. We assume the coordinates of the
centroid of those aerial photos as the ground truth and compare
them with the extracted coordinates. In the west-to-east path,
the UAV takes 26 aerial photos. After domain transformation

by the CycleGAN, our classifier correctly predicted the class
to which those photos belong, and the average error is 9.17 m.
When flying north-to-south trajectory under the same setting,
however, with only 20 photos, the average error is 7.33 m.
We also randomly selected 10 photos to calculate the average
error. However, the error is 36.3 m, larger than the trajectory
case. The errors are compared with the ground truth from
successful predictions, which is also the common practice
adopted by [38], [46]. In contrast, landmark recognition based
on GNSS can be unreliable because GPS drift can be as much
as 100m [48].

D. Experiment on real UAV Environments
We also deployed and evaluated GridNet on two real-world

UAV environments and a Raspberry Pi 3B+. Considering the
limited computation resources of IoT devices such as memory,
CPU, and power budget, we focused on the performance of
light-weight neural network models, i. e., the MobileNet series.
The inference time, memory usage, and power consumption
are summarized in Table V.

TABLE V: Lightweight model performance on different UAVs
Platform Model Inference Memory Power con-

time sumption

Raspberry Pi MobileNetv2 [41] 282ms 384MB 2.47 Watts
MobileNetv3 [42] 436ms 558MB 2.49 Watts

Intel NUC Gen 5 MobileNetv2 [41] 3.4ms 249MB 41.5 Watts
MobileNetv3 [42] 2.7ms 220MB 41.9 Watts

Intel NUC 11 MobileNetv2 [41] 0.8ms 213MB 99.8 Watts
Enthusiast MobileNetv3 [42] 1.2ms 288MB 101.4 Watts

TABLE VI: Comparison of hardware, runtime, and storage.
Paper CPU & GPU Memory Avg. time/image Storage

[38] Intel i7 & Nvidia Quadro 32 GB 0.11 s 423 MB
[46] Intel i7 & Nvidia Quadro 32 GB 9.23 s 794 MB
[32] Raspberry Pi 3B+ 1 GB 10.48 s 667 MB
Ours Raspberry Pi 3B+ 1 GB 0.28 s –
Ours NUC Gen 5 16 GB 0.0027 s –
Ours NUC 11 & RTX 2060 64 GB 0.0008 s –

VII. CONCLUSION

This paper presents GridNet, a vision-based deep learn-
ing method enhancing UAV navigation security. Leveraging
DNNs, it extracts geolocation from aerial photos, achieving
93% spoofing detection accuracy in 3 ms per image. It supports
GPS-denied positioning, requires no pre-flight UAV data, and
suits resource-constrained platforms as a mapless solution. Fu-
ture work should address altitude adaptability, update imagery
in real-time, and expand data across varied geographic con-
texts, including different landscapes. In conclusion, GridNet
offers a robust, efficient counter to GPS vulnerabilities. Further
extending its adaptability and generalization capabilities will
enhance its practical applicability and real-world impact.
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