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Abstract—Automatic Dependent Surveillance-Broadcast
(ADS-B) has been widely adopted as the de facto standard
for air-traffic surveillance. Aviation regulations require all
aircraft to actively broadcast status reports containing identity,
position, and movement information. However, the lack of
security measures exposes ADS-B to cyberattacks by technically
capable adversaries with the purpose of interfering with air
safety. In this paper, we develop a non-invasive trust evaluation
system to detect attacks on ADS-B-based air-traffic surveillance
using real-world flight data as collected by an infrastructure of
ground-based sensors. Taking advantage of the redundancy of
geographically distributed sensors in a crowdsourcing manner,
we implement verification tests to pursue security by wireless
witnessing. At the core of our proposal is the combination
of verification checks and Machine Learning (ML)-aided
classification of reception patterns—such that user-collected data
cross-validates the data provided by other users. Our system is
non-invasive in the sense that it neither requires modifications
on the deployed hardware nor the software protocols and only
utilizes already available data. We demonstrate that our system
can successfully detect GPS spoofing, ADS-B spoofing, and even
Sybil attacks for airspaces observed by at least three benign
sensors. We are further able to distinguish the type of attack,
identify affected sensors, and tune our system to dynamically
adapt to changing air-traffic conditions.

I. INTRODUCTION

The monitoring of air traffic has evolved from an analog
Radio Detection and Ranging (RADAR)-based system to a
digitally-aided surveillance infrastructure. Effective from Jan-
uary 1, 2020, all aircraft are required to be equipped with an
Automatic Dependent Surveillance-Broadcast (ADS-B) system
to access most of the world’s airspace [54], which hence con-
stitutes the de facto standard for air-traffic monitoring. ADS-B-
capable transmitters periodically broadcast status reports that
inform others about their identification, position, movement,
and additional status codes.

While the aviation industry is characterized by very long
development cycles—up to several decades—, applications

that mandate high safety guarantees are usually lagging behind
advancements on the security side. As such, ADS-B reports
are neither encrypted nor authenticated. At the same time,
the open specification of ADS-B promotes the collection and
free usage of aircraft reports. Simple sensors can decode
aircraft broadcast reports and gain a real-time view of their
surrounding airspace. A network that combines more than
1000 user-operated ground-based sensors in a crowdsourcing
manner is the OpenSky Network [39]–[42], [47]. This network
collects and stores air-traffic data from around the world and
makes them available for research.

Since ADS-B lacks fundamental security practices, the
exposure to cyberattacks targeting air traffic has long been
discussed [5], [19], [24], [35], [36], [43], [44], [48]. These
works demonstrate how attackers can interfere with aircraft
sensors and how fake aircraft messages can be injected into
air-traffic monitoring systems [5]. For instance, adversaries
with commercial off-the-shelf hardware and moderate knowl-
edge can generate arbitrary messages mimicking valid ADS-B
reports [44], [48]. The consequences of such attacks range
from distraction on the flight deck or in the control room
up to violations of mandatory safety separations, and even-
tually increasing the possibility of aircraft collisions. Since
the implementation of these attacks is far from being only
of academic nature, security solutions are urgently needed
to protect the integrity of air-traffic surveillance [4]. In fact,
data trust establishment is an open and central problem in the
aviation industry and emerging concerns have already reached
the public [4], [11], [14], [15], [63].

To answer the demands for more security in the safety-
driven aviation industry, we propose a data-centric [32] trust
evaluation system with the goal of assessing the trustwor-
thiness of ADS-B reports using data that is already col-
lected at wide scale. We refer to trust in the sense that
messages are trustworthy when they originate from functional,
non-malicious sources. In contrast, error-prone or attacker-
controlled messages trying to harm the system should be
detected. Furthermore, we explore the identification of the type
of attack and the traceability of malicious sensors.

The development of such a system faces several challenges
imposed by the highly regulated aviation industry. Viable
solutions need to be non-invasive in the sense that they do not

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24552
www.ndss-symposium.org



require any modifications on the deployed hard- and software.
In particular, security systems should not interfere with other
systems already in place to avoid lengthy (re)certification
processes [4]. Preferably, solutions are augmentation systems
that operate autonomously with sensor input already available.
We develop our system to fulfill all these challenges.

At the core of our system, we make use of the crowd-
sourcing nature of a sensor network in which user-collected
data cross-validates data provided by other users. Forming a
network of trusted sensors based on mutual auditing, we pursue
wireless witnessing. Wireless witnessing is the collaborative
process of observing the status of a distributed wireless system.
We apply it in the security context to assess and validate the
trustworthiness of ADS-B reports. In particular, we implement
a Machine Learning (ML)-based verification test that is trained
on typical message reception patterns1. The collaboration of
sensors characterizes expected reception patterns of aircraft
reports transmitted from certain airspace segments while auto-
matically factoring in natural message loss.

Our system can reliably differentiate between normal air-
traffic broadcasts and suspicious reports diverging from ex-
pected patterns if at least three sensors observe the same
airspace. This assumption is already fulfilled by the majority
of the considered airspace. Furthermore, our system can recog-
nize the type of attack, e. g., GPS spoofing or ADS-B spoofing
to trace affected sensors and identify the sensor redundancy
as an important factor. While minimizing false alarm events,
we achieve detection rates beyond 95% for moderate GPS
spoofing deviations and any form of ADS-B spoofing. To
further harden the network against attacks, new sensors can be
integrated by providing consistent snapshots of their airspaces.
Since our system is solely based on an already existing infras-
tructure and does not require any modifications on aviation
systems, it is non-invasive and could be implemented today
easing very long certification processes. In contrast to existing
solutions for air-traffic verification [10], [21], [22], [26], [37],
[38], [52], [60], we do not require the measurement of time,
frequency shifts, or any PHY layer features, but only use
discrete sensor events.

In summary, the contributions of this paper are:

• We propose the first comprehensive approach to evaluate
the trustworthiness of ADS-B aircraft reports based on an
existing infrastructure of crowdsourcing sensors.

• We demonstrate the applicability of our approach by
incorporating real-world flight data collected by geo-
graphically distributed sensors at a large scale.

• We simulate prominent attacks on GPS and ADS-B,
detect their presence via validation in our trust system,
and draw conclusions about their type and origin.

• We elaborate on network expansion and optimized sensor
deployment to further harden the network against attacks
in the future.

II. SYSTEM AND ATTACKER MODELS

We first describe today’s air-traffic monitoring techniques
with a focus on ADS-B. We then introduce our trust definition
and present the consolidated system model. Finally, we define
the considered attacker model.

1https://github.com/kai-jansen/ADSB-Trust-Evaluation

A. Air-Traffic Monitoring

In recent years, traditional analog RADAR-based systems
for air-traffic monitoring have been augmented with digital
means for active wireless communication. For the communi-
cation with ground stations and other aerial vehicles, aircraft
are mandated to be equipped with ADS-B transponders that
periodically broadcast status reports [54]. These reports contain
aircraft identification, information on speed, track, and accel-
eration along with further observation data. The positioning
information is mainly derived via GPS, which is the preferred
method for self-localization.

Since the ADS-B protocol is openly specified, the mod-
ulation and data frame patterns are known. ADS-B operates
at a frequency of 1,090MHz and the typical reception range
can reach up to 700 km. The signals can thus be received by
simple consumer-grade hardware such as Universal Software
Radio Peripherals (USRPs) [9] or even cheaper Software
Defined Radios (SDRs) like RTL-SDR dongles [33], which
are available for as low as $20. The availability of SDRs not
only allows passive eavesdropping but also led to software
tools for active ADS-B transmission [6] or the generation of
fake GPS signals [28]. Surprisingly, the ADS-B protocol lacks
fundamental security measures, and neither applies encryption
nor authentication.

B. Trust Definition

We define trust in our system as the certainty of an ADS-B
report to be the result of normal behavior and not disrupted by
malfunctioning or active manipulation. To this end, a trusted
report represents valid data transmitted by genuine sources.
On the other hand, an untrustworthy report is either erroneous
or contains fake data that should be discarded from further
processing. While the traditional notion of trust had been
entity-centric and rigid, today’s fast-changing ad hoc networks
necessitate the adjustment of trust models.

Hence, we seek to establish a data-centric trust model
in consideration of short-lived associations in volatile envi-
ronments as mentioned by Raya et al. [32]. In particular,
we design a trust system that is driven by data collected by
geographically distributed sensors that share their observations
within a network. The combination of redundant views enables
the system to cross-validate data and eventually establish a
form of wireless witnessing.

C. Consolidated System Model

We consider the following system model. Aircraft that are
equipped with an ADS-B transmitter periodically broadcast
status reports which among other information include GPS-
derived positions. A set of geographically distributed sensors
receive these reports and their observations are shared with
others in a crowdsourcing manner. A central server collects and
processes the forwarded observations. Overall, we are faced
with the high mobility of aircraft, while the receiving sensors
are stationary and are less likely to move significantly. Figure 1
depicts an overview of our system model that we consider to
assess the trustworthiness of ADS-B reports.
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Fig. 1. Our considered system model of aircraft using GPS satellite signals
for self-localization and ADS-B sensors forwarding aircraft reports to the
processing central server.

D. Considered Adversary

Our adversary model comprises several prominent attack
vectors, which we categorize according to their intended target
and their scope. Table I shows an overview. We evaluate our
proposed system against these attacks. Moreover, we will argue
in Section VI-C that even attackers with complete knowledge
about our verification scheme cannot bypass our implementa-
tion of wireless witnessing and can still be detected.

GPS Spoofing. The airborne (self)-positioning sensors process
received GPS signals from multiple satellites to embed the
results in the broadcasted ADS-B reports. One attack scenario
considers the spoofing of GPS signals where an attacker
sends out specially crafted signals at a considerable signal
strength [16], [53]. As a result, an attacker can inject false
positioning or timing information into the aircraft systems
inducing the processing of fake attacker-controlled data [19].

ADS-B Spoofing (Single). An attacker capable of generating
fake ADS-B messages can transmit arbitrary reports with full
control over their contents [5], [24], [36]. These bogus reports
may represent, e. g., any aircraft identifier, positioning solution,
or movement information. Receivers of such messages will de-
code the message contents and forward the sensed information
to the central server. We differentiate this attack according to
the number of affected sensors. An attacker that is limited in
its effective range is likely to only affect single sensors due to
their broad spatial distribution.

ADS-B Spoofing (Multiple). A large-scale attacker may also
be capable of targeting multiple geographically distributed
sensors at the same time. This attacker, however, requires
multiple antennas or a high elevated high power antenna. The
attack is conducted in a broadcast fashion and is expected to
affect all sensors within its targeted area. As a result, more than
one sensor would receive the same fake report and forward it
to the central server.

Sensor Control. Due to the open nature of the surveillance
network, attackers may operate their own sensors and become
part of the crowdsourcing infrastructure. Having full control
over a sensor, an attacker is able to inject arbitrary data
encapsulated in genuine ADS-B reports [36]. This attack can
be performed without broadcasting any signals and can be
directly conducted on the network level.

TABLE I. ATTACK VECTORS

Target Attack Scope Effort

Aircraft GPS Spoofing - Moderate

ADS-B Sensor(s) ADS-B Spoofing Single Moderate
Multiple High

Central Server Sensor Control Single Low
Sybil Attack Multiple High

Sybil Attack. A large-scale attacker operating a significant
number of sensors can perform a Sybil attack [7] with the
purpose of overruling the network’s protection systems. The
sensors may be deployed at different locations to influence
several redundant views at the same time. This constitutes one
of the most powerful attack against sensor networks.

III. DESIGN OF AN ADS-B TRUST SYSTEM

We propose a system to establish a dynamic verification of
ADS-B messages for air-traffic surveillance. We first describe
the specifics of the analyzed data and state general network
statistics. We then define (i) three verification tests checking
the contents of a message and (ii) one ML-based classification
of the report metadata, i. e., the reception pattern.

A. Data Source Specifics

As the source of our considered data, we utilize real-world
air-traffic data from the OpenSky Network [39]–[42], [47]. The
sensors are installed and operated by volunteers, who can either
remain anonymous or opt to register by providing personal
information. Over 1000 sensors promote the coverage of the
network that exhibits a particular high sensor density in Europe
and on the American continent. The network relies on user-
provided data, processes it on centralized servers, and offers
access to the collected data of around 20 billion messages
per day. It is noteworthy that nodes in the network are not
equipped with any cryptographic means or certificates, which
would hinder the growth of the sensor network and contradict
the easy access to the crowdsourcing platform. While other
air-traffic sensor networks exist, we make use of the research-
friendly data sharing of this network.

For the sake of simplicity, we initially restrict the consid-
ered ADS-B reports to the European airspace where the Open-
Sky Network sensor density is the highest. To further reduce
complexity, we divide this space into non-overlapping square-
shaped clusters C with edge lengths of approx. 10 km. In total,
the considered environment becomes the union of 232,139
different clusters Cj ∈ C.

In order to get a better understanding of the data provided
by the OpenSky Network, we visualize the sensor coverages
and the number of processed ADS-B messages with respect to
their spatial distribution. These evaluations are based on data
collected from an entire day (February 15, 2020) resulting in
a total of 132,883,464 messages broadcasted by real aircraft.
Figure 2 depicts a heat map of the spatial distribution of
all recorded ADS-B reports. As one can see, most reports
originated from a few cluster areas close to central European
airports. Notably, the database only contains messages that
reached at least one contributing sensor.
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Fig. 2. Spatial distribution of captured ADS-B reports from the OpenSky
Network in Europe as of February 15, 2020.

The overall coverage of the network is the combination of
all participating sensors. Since sensor coverages can signifi-
cantly overlap with each other, the redundancy is higher in
areas with more sensors as compared to rural areas. Figure 3
shows the aggregated sensor coverage of the OpenSky Network
as of February 15, 2020. The heatmap depicts the number of
sensors that simultaneously cover an indicated area. A total of
729 different sensors reported data for the considered airspace.
We notice a strong dominance in Central Europe, where
the most participating sensors are operated. Nevertheless, the
coverage of the sensor network also limits the applicability of
our system. Airspaces covered by no sensors are not protected.

B. Notations

For the remainder of this paper, we use the following
notations. The network is formed by a set of ground-based
sensors S, where each sensor is referred to as Si ∈ S.
Each ADS-B message m can be received by an arbitrary
number ≥ 1 of sensors Si, hence the link (m,Si) exists.
Due to noise effects and message collisions, message loss can
naturally occur and we denote the probability that sensor Si

receives a message transmitted from cluster Cj as Prec(Si, Cj).
Moreover, the messages are timestamped by the receiving
sensors, where t is the issued timestamp. When a message
is not picked up by any sensor, it is consequently not in the
considered database. Table II summarizes the used notations.

TABLE II. PARAMETER NOTATIONS

Parameter Notation

Cluster C
ADS-B Sensor S
ADS-B Message m
Time t
Probability of Reception Prec(S,C)

Fig. 3. The aggregated sensor coverage of the OpenSky Network with a
strong dominance in Central Europe as of February 15, 2020.

C. ADS-B Message Trust

In order to assess the trustworthiness of ADS-B messages,
we design an evaluation process consisting of four verification
tests, namely (i) sanity, (ii) differential, (iii) dependency, and
(iv) cross check. While the former three tests are stated for the
sake of completion, we focus on the cross check that is tailored
towards the existing sensor infrastructure to implement wire-
less witnessing. The system overview is depicted in Figure 4
and is developed in the following.

1) Sanity Check: The sanity check represents a message
content verification with respect to defined value ranges.
Where data values are not restricted by definition, we apply
physical possibility bounds. Sanity checks are specific to the
message content, i. e., the reported aircraft status. Table III
provides an overview of the implemented sanity check.

Position. The reported position contains information about
the latitude, longitude, and altitude. The latitude is only
defined in the range of −90◦ to 90◦, whereas the longitude
is defined over −180◦ to 180◦. The altitude is not bounded
by its definition but by physical restrictions ranging from
approx. −3m, which is the altitude of the lowest European

TABLE III. SANITY CHECK

Category Parameter Range

Position
Latitude −90◦ to 90◦

Longitude −180◦ to 180◦

Altitude −3m to 20,000m

Movement
Velocity 0 km/h to 1,200 km/h
True Track 0◦ to 360◦

Vertical Rate −50m/s to 50m/s

Identification ICAO Identifier Registered Aircraft
Call Sign Assigned Call Signs
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Fig. 4. The process of ADS-B trust evaluation including all four verification tests, their utilized data, and conditional branching to subsequent attack analysis,
where the type of attack and the affected sensors are identified.

TABLE IV. DIFFERENTIAL CHECK

Parameter Maximal Change per Second

Horizontal Position 500m
Altitude 100m
True Track 10◦

Velocity 25 km/h
Vertical Rate 10m/s

airport, Amsterdam Airport Schiphol. For the maximal altitude,
we use a bound of 20,000m, which is hardly reachable for
casual air traffic.

Movement. While airborne, the velocity is expected to be
positive and bounded by the maximal speed of the specific
aircraft type, usually less than approx. 1,200 km/h. The di-
rection of movement, referred to as the true track, is defined
by the angle aligned with the True North in the range of 0◦

to 360◦. Moreover, the vertical rate is also aircraft-dependent
and is expected to not exceed ±50m/s.

Identification. Each aircraft is assigned a unique identifica-
tion, the ICAO 24-bit registration identity. This identifier can
be checked against databases that contain currently assigned
ICAO registrations. In addition, each aircraft is assigned a
volatile call sign, which can also be verified.

2) Differential Check: The differential check considers
changes between succeeding ADS-B messages from the same
aircraft. These checks, therefore, require the assignment of
messages to tracks based on the included identifier. In consid-
eration of the message update rate and broadcast frequency, we
identify reasonable maximal changes per second that conform
to the inertia and aircraft capabilities as well as covered
by observations of real flight data. Table IV contains the
implemented tolerable parameter changes. In cases where we
receive updated ADS-B reports after a prolonged loss of
communication, e. g., due to missing sensor coverage, we
incorporate the lack of data by scaling the tolerable maximal
change with the missed time period.

3) Dependency Check: The dependency check verifies the
relationship between physically-dependent parameters of sub-
sequent reports from the same aircraft. We validate reported
horizontal and vertical changes based on predictions of the
next position and allow for a tolerance up to 100m, which we

TABLE V. DEPENDENCY CHECK

Relationship Tolerance

Horizontal Position ↔ Velocity + True Track 100m
Altitude ↔ Vertical Rate 100m
Altitude ↔ Aircraft on Ground 1,707m

have empirically derived from the available dataset. A further
dependency exists between the reported altitude and the aircraft
indicating to be on ground. We coarsely perform this check
against the elevation of the highest European airport (1,707m),
Samedan Airport of Switzerland. Notably, more fine-grained
information about the geographical topology would greatly
benefit the validity. Table V shows the implemented depen-
dency checks.

4) Cross Check: The cross check utilizes the spatial redun-
dancy of the surveillance network in a collaborating manner.
Participating sensors are widely distributed and their coverages
overlap significantly, as shown in Figure 3. Even though the
sensor locations are unknown, we can determine which sensors
observe which airspace via inspecting the reported positions
embedded in their received ADS-B reports. Hence, in our
grid-based approach, each cluster Cj is dedicated to covering
sensors Si such that the following equation holds:

Prec(Si, Cj) > 0. (1)

If multiple sensors Si cover the same cluster Cj such that
Prec(Si, Cj) > 0, we can countercheck received message by
consulting all designated sensors. For each sensor that covers a
reported aircraft position, we distinguish two discrete events—
the sensor has received the message or the sensor has not
received the message:

Xm,Si
=

{
0 @(m,Si)

1 ∃(m,Si)
. (2)

Due to noise effects and signal collisions, sensors naturally
experience a message loss in the range of 10% to 75%
depending on the distance to the origin, obstacles in view, and
the airspace density [39]. Hence, the case of missing a report
does not causally imply unusual behavior or the existence of
attacks and needs to be factored in accordingly. We refer to the
combination of events Xm,Si

, Si ∈ S as the observed message
reception pattern for a report broadcasted from the claimed
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position. Each sensed message is therefore mapped to a vector
representing the reception events for every sensor:

~Xm =
[
Xm,S1

, Xm,S2
, · · · , Xm,Sn−1

, Xm,Sn

]
, (3)

where n is the total number of sensors in the network. For
our considered scenario, we obtain a vector with 729 entries,
which represents the message reception pattern. These patterns
exhibit a certain variance and cannot be translated into fixed
rules due to non-deterministic sensor reception. Hence, we
choose a Machine Learning (ML) approach to handle the huge
amount of available data and simultaneously consider unknown
external effects.

In particular, for each of the 132,883,464 recorded ADS-B
reports, we determine which of the 729 sensors reported
that specific message. In combination with the embedded
positioning information, we learn typical reception patterns for
the entire day and label the data to be the result of normal
operating air traffic and sensors. After processing all reports,
each cluster Cj is assigned with actually observed message
reception patterns and we assume these patterns to represent
normal behavior. We discuss this assumption in Section VI-A
and reason about its validity.

Algorithm Choice. Since our feature space is defined by
the number of sensors and each feature is limited to either
be 0 (not received) or 1 (received), we choose to use Decision
Trees (DTs). This choice is in accordance with similar work
classifying distributed sensor events [23], [59]. For more
information on machine learning algorithms, we refer to an
article by Leo Breimann [2].

D. Attack Analysis

In the case where at least one of our verification tests
indicates unusual behavior, an attack analysis is triggered that
tries to further reason about (i) the type of attack and (ii) the
affected sensors. Depending on which test triggered the attack
analysis, different conclusions can be drawn on the cause of
an alarm.

1) Type of Attack: We notice that our three attack classes,
i. e., GPS spoofing, ADS-B spoofing, and sensor control/Sybil
attack, can be characterized by the type of manipulation they
cause on the message, respectively on the network. This can
either be on the content of the ADS-B messages directly, or
more subtle on the message reception characteristic. While
the sanity, differential, and dependency checks can verify
the message payload, the cross check evaluates the reception
pattern. For each attack vector, we identify which verification
test is indicative and provide an overview in Table VI.

Sanity Check. The sanity check detects defined value range
violations. These can occur when a report is either specifically
crafted during an ADS-B spoofing attack or if a sensor is
entirely under the control of an attacker.

Differential Check. The differential check is indicative to
unusual jumps in the data. A GPS spoofing attack may hence
be detectable if the position exhibits a sudden jump. All other
attacks may also trigger an alarm depending on the variance
in the generated fake data.

TABLE VI. SENSITIVITY TO ATTACKS

Attack Vector San
ity

Diff
ere

ntia
l

Dep
en

den
cy

Cro
ss

GPS Spoofing # G#   

ADS-B Spoofing (Single) G# G# G#  
ADS-B Spoofing (Multiple) G# G# G# H#

Sensor Control G# G# G#  
Sybil Attack G# G# G# H#

# not indicative, G# potentially indicative
 always indicative, H# network dependent

Dependency Check. The dependency check detects incon-
sistencies between dependable data from independent sensors
within the aircraft. Since a successful GPS spoofing attack
only affects GPS-related sensors, other information on the
movement or on the heading will likely result in a violation.
Again, other attacks may also fail this test if the fake reports
do not satisfy parameter dependencies.

Cross Check. The cross check tries to decide if a message
reception pattern is the result of normal behavior or not. An
aircraft report affected by a GPS spoofing attack indicates
a wrong position and the reception pattern will likely differ
from the actual reception pattern of the real location. For the
other attacks, the validity of the cross check depends upon
the number of benign sensors that observe the claimed aircraft
position. The more sensors simultaneously cover an area, the
less likely it will be that only a specific number of sensors,
e. g., affected by an ADS-B spoofing attack, receive the specific
message. Similar considerations apply for attackers adding
sensors to the network. Unaffected sensors will not report
injected messages which is eventually reflected in an unusual
reception pattern. For both attack classes, reception patterns
are easier to decide the more sensors are participating.

2) Affected Sensors: If we successfully detect unusual
behavior and identify the type of attack, we try to also reason
about the affected ADS-B sensors. We generally distinguish
between passively and actively participating sensors during
an attack. While we can tag all sensors that reported an un-
trustworthy message as potentially malicious, we are interested
which sensors are indeed under the attacker’s control. These
compromised sensors are actively trying to disrupt the network.
We, therefore, identify all sensors that report messages clearly
assigned to a sensor control/Sybil attack as malicious. Their
identification allows the disconnection from the network and
to restore the network’s integrity.

On the other hand, sensors that fell victim to an attack
themselves may only be temporarily disconnected from the
network. Sensors that are recognized in such a way can later
be reactivated once the attack is over. The tracing of affected
sensors also allows for a coarse localization of an attack. Even
though sensor locations are unknown, coverages of the sensors
can be determined and consequently a rough attacker position
could be narrowed down.

IV. SIMULATION

While the characteristics of normally operating air traffic
can be learned from the actually received ADS-B reports,
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Fig. 5. Visualization of GPS spoofing: Starting at tattack, we apply different
deviations α in clockwise and counterclockwise direction. The generated
ADS-B reports contain the spoofed positions along the red lines.

attack scenarios are required to be emulated based on realistic
assumptions and experience. Assuming that no attacks were
launched on the selected day (February 15, 2020), we use all
reports to map typical reception patterns. In the following, we
describe how we simulated the three considered attack classes,
i. e., GPS spoofing, ADS-B spoofing, and sensor control/Sybil
attack. For each attack, we generate at least the number of
reports as received normally, i. e., more than 132 million
different fake reports representing each respective attack. Note
that this does not reflect the actual distribution between normal
and attack reports, but is chosen to establish a reasonable
database of fake reports. This allocation is used for the training
process only.

A. GPS Spoofing

To emulate a successful GPS spoofing attack, we manipu-
late the reported GPS-derived positioning information embed-
ded in ADS-B reports. More precisely, we randomly sample
one ADS-B report from the entire dataset. We then gather
all reports from the corresponding aircraft for the preced-
ing 15min and the next 60min representing a 75min aircraft
track. This track is then subject to selected deviations α of 1◦,
2◦, 5◦, 10◦, 20◦, or 45◦ to simulate an attack incrementally
leading aircraft off their track starting at tattack = 15min.
Figure 5 depicts this procedure. For each deviation, we replace
the GPS position in the reports while all other data fields and
the sensors that received the message remain the same. We
label the messages as resulting from a GPS spoofing attack
after tattack and also keep track of the applied deviation, the
distance to the original track, and the elapsed time after the
attack has been launched. We repeat this process of randomly
sampling reports from the dataset and manipulating the GPS
position until the desired number of reports is reached.

B. ADS-B Spoofing

When simulating an ADS-B spoofing attack, we are faced
with the problem of unknown sensor locations. Even the
tracing of observed clusters does not reveal a sensor position
since the reception range can highly vary and may be distinct in

𝑆5 𝑆6

𝑆2

𝑆4

𝑆3

𝑆1
single

multiple

all

Fig. 6. Visualization of ADS-B spoofing: An attacker may follow three
different strategies to inject fake reports. The attacker either affects (i) a
single sensor (dark dotted area), (ii) multiple sensors (striped area), or (iii) all
sensors (entire dotted area).

different directions. It is noteworthy that an attacker would face
the same problem and cannot pinpoint sensors but would need
to blindly affect larger regions when targeting multiple sensors.
We differentiate the attack according to how many sensors fall
victim to the attack, i. e., a single sensor, multiple sensors, or
all sensors within a selected region. Figure 6 illustrates these
attacks. To simulate an attacker targeting multiple sensors, we
randomly pick sensors up to the average number of observing
sensors of the respective cluster.

We again generate fake messages for each scenario by
randomized sampling from real-world aircraft reports. We
extract the corresponding 75min long track and adjust the
receiving sensors depending on the coverage of the considered
cluster and how many sensors are affected by the attack. All
other data fields remain the same. We use real aircraft reports
to represent an attacker trying to inject authentic ghost aircraft
into the network by sending those messages to the scenario-
dependent number of sensors.

C. Sensor Control/Sybil Attack

In a sensor control/Sybil attack, an attacker adds sensors to
the network that are under the attacker’s synchronized control.
We assume that the attacker’s sensors initially behave normally
to remain unnoticed prior to any fake message injection. When
an attack is launched, all controlled sensors mutually try to
report the same fake message. We again differentiate between
the number of controlled sensors with regard to the number of
benign sensors, i. e., a single sensor or equality between the
attacker’s sensors and benign sensors.

The process of sampling and selecting tracks is the same
as for ADS-B spoofing. We assume that the attacker utilizes
all controlled sensors to inject the same message. Notably, the
benign sensors that cover the same area are not affected by a
Sybil attack and will consequently not report the injection of
such messages.

V. EVALUATION

We split the evaluation of the developed ADS-B trust
system into (i) performance of detecting each considered
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attack, (ii) distinguishing between attack vectors, (iii) identi-
fying affected sensors, (iv) analyzing the impact of different
grid resolutions, (v) investigating the time dependency and
(vi) estimating the computational performance.

A. Attack Detection Performance

We approach the attack detection performance in two
different ways. First, we consider the classification results
of single ADS-B reports without linking consecutive reports,
and second, we make decisions on combined aircraft tracks.
The training process uses all reports of the selected day as
well as the simulated attack vectors based on randomly sam-
pled 75min long aircraft tracks from the OpenSky Network
database according to Section IV. Our attack detection evalu-
ation prototype uses clusters Cj with edge lengths of 10 km.
We assign each report to its originating cluster indicated by the
embedded position splitting up all messages over the observed
area. We then perform training with our selected DT classifier
by iterating through all clusters.

For testing, we again query the database for 1000 untrained
and randomly selected aircraft tracks. We do not make any
restrictions on the selection process except that we require
that at least 50% of the broadcasted reports are actually
recorded by the network. This filters tracks that would quickly
leave the covered area, i. e., the scope of the network, and
hence cannot be classified due to missing reports. We apply
the different attack vectors, label each track accordingly, and
then classify the resulting reports with the classifier for the
designated cluster. For our three attack classes, i. e., GPS
spoofing, ADS-B spoofing, and sensor control/Sybil attack,
we shortly describe which test triggers an alarm and then
focus on the ML supported cross check providing True Positive
Rates (TPRs) and False Positive Rates (FPRs).

1) GPS Spoofing: While an incremental position deviation
passes the differential check, our dependency check consis-
tently indicates mismatches between predicted positions and
the reported GPS position. Even though we account for a
specific uncertainty threshold, at one point in time, the attack
exceeds this threshold. In consideration of the cross check,
the intuition is that the further away an aircraft claims to
be from its real position, the more different the reception
pattern will be. Notably, the selected cluster for the cross
check is determined by the reported/claimed position. If the
real position and the spoofed position are still within the same
cluster, the reception patterns are the same and a decision
towards the presence of a GPS spoofing attack is not possible.

To assess our detection performance of GPS spoofing
attacks, we consider a classifier that has been trained with
samples from normal operation and the simulated GPS spoof-
ing reports. We further calculate a score based on the classifier
outcome and the total number of reports. Following this metric,
a score of 1 means that every report is labeled authentic while
a score of 0 means that every report was labeled malicious.
We evaluate (i) the average score over all 1000 runs of
the classifier with respect to different deviations α from the
original track and the elapsed time in Figure 7 and (ii) the
average score with respect to the distance to the original track
in Figure 8. The distance to the original track is a combination
of the applied deviation and the time that has elapsed after the
launch of the attack.

Fig. 7. When a GPS spoofing attack is launched, the classification score
diverges from the normal operation score and continues to decrease over time.
The rate is based on the applied deviation α and considers the average over
all 1000 simulation runs.

Fig. 8. The classification score under GPS spoofing decreases significantly
with increasing distance to the original track. The vertical lines indicate
distances in multiples of the grid resolution of 10 km.

Results. While the dependency check is effective in detecting
GPS spoofing attacks, in cases where additional information
might be missing, the cross check is sufficient to detect such
attacks with a high probability after a certain amount of time
has passed, see Figure 7. For instance, considering α = 2◦,
α = 10◦, and α = 45◦ the score falls below 0.5 after
approx. 20min, 5min, and 1min, respectively. The rate at
which the average score decreases is dominated by the applied
deviation α. The higher the deviation, the faster the fake
positions approach other clusters, leading to mismatches in
the reception patterns. Notably, the average score, even under
normal operation, never reaches 1 due to a portion of reports
being wrongly classified. We will handle this problem by
linking successive reports when deciding aircraft tracks.

Figure 8 condenses the deviation and the elapsed time
into the distance to the original track. The average score
quickly approaches 0.5 for distances up to one grid resolution,
i. e., 10 km in our evaluation prototype. After this point has
been reached, the decline slows down and reaches approx. 0.35
for a distance of two grid resolutions. Further distances only
moderately decrease the average score and it nearly stabilizes
at this point. We observe that the classifier can differentiate the
reception patterns and perform increasingly better, the further
away the spoofed track deviates from the real aircraft track.
Note that in the worst case, a distance of approx.

√
2-times

the grid resolution can still point to the same cluster. However,
increasing the distance further guarantees different clusters.

We now approach the question of how we decide aircraft
tracks, in contrast to the aforementioned evaluations where
we showed average scores over all test runs for individual
reports. Figures 7 and 8 show that the score fluctuates and
that authentic reports are sometimes labeled as malicious. Even
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TABLE VII. GPS SPOOFING DETECTION PERFORMANCE - FEBRUARY 15, 2020

Deviation α [◦] Attack Detection [%] Detection Delay (Median ± SD) [min] FPR [%]
w = 5 w = 10 w = 15 w = 5 w = 10 w = 15

1 64.98 75.64 76.65 41.63± 10.32 37.68± 10.88 37.26± 10.87 0
2 85.03 90.61 90.36 26.73± 10.88 25.05± 10.78 25.31± 10.23 0
5 96.19 96.45 96.70 16.50± 10.59 15.14± 9.57 16.70± 9.34 0
10 98.73 98.22 98.48 10.97± 10.11 11.07± 8.99 12.56± 8.52 0
20 98.99 98.99 98.48 8.08± 8.86 8.81.23± 8.07 10.27± 7.56 0
45 99.49 99.49 99.49 5.83± 7.88 7.22± 7.47 8.52± 7.26 0

when no attacks are applied, we never reach a perfect score
of 1. Hence, the detection of attacks cannot be based on
single messages alone without triggering a high number of
false alarms. Considering that we designed our system as an
augmentation system for attack detection, false alarm events
are disruptive and a high number is unacceptable.

To compensate for single false positives, i. e., malicious
patterns detected when no attack is applied, we implement
time windowing. In particular, we tested three different time
windows w, i. e., 5min, 10min, and 15min. The time win-
dowing is only applied backwards such that the score at time t
becomes the average score of all received reports within the
last w minutes. The final decision is then based on score
thresholds. With the target of minimizing false alarms, we
set the threshold at the lowest score that we observed across
all randomly selected 1000 aircraft tracks at any given time
after tattack. As a result, we achieve a false positive rate of 0%
by design with respect to the considered tracks. The selected
threshold depends on the length of the time window, where
shorter time windows lead to higher thresholds and larger time
windows allow tighter thresholds.

In Table VII, we list the GPS spoofing detection perfor-
mance considering different deviations and time windows. We
analyzed the attack detection rate, i. e., the number of detected
attacks compared to all tested runs and the detection delay,
i. e., the time at which we observed the threshold violation
and raised an alarm. We additionally state the median and the
standard deviation. Bold entries mark the best results in each
row. We want to highlight that for every configuration the FPR
is 0% due to how the threshold is chosen.

With increasing deviation α, the attack detection reaches
up to approx. 99.5%. An attack counts as detected when the
threshold is undercut within the first hour after the launch
of the attack. The missing 0.5% that were not detected are
due to very slow or even parking aircraft. The impact of GPS
spoofing becomes negligible in such scenarios considering how
we simulated it. The rest of the deviated aircraft tracks are
detected with a very high probability. The detection delay
strongly depends on the applied deviation α. For higher values,
the average detection delay can go as low as approx. 6min and
standard deviations around 8min. The time window w also
impacts the performance. The implementation of different time
windows is beneficial since the best attack detection rate and
the detection delay is dependent on the applied deviation α.

2) ADS-B Spoofing: For the evaluation of the ADS-B
spoofing detection performance, we specifically focus on the
outcome of the cross check. Since an attacker is able to
generate arbitrary reports, we assume that an attacker can
successfully remain undetected by the sanity, differential, and

Fig. 9. As soon as the attacker starts to inject fake reports, the average
score drops immediately. Affecting multiple sensors but not all is the most
susceptible to misclassifications.

dependency check. Considering the testing set for the cross
check, we take the same sampled aircraft tracks from the GPS
spoofing evaluation but apply ADS-B spoofing according to
Section IV. At time tattack, the attacker launches the spoofing
attack representing a scenario where an aircraft track would
normally end, but is continued by fake injections into the
system. We distinguish between three scenarios depending on
the targeted number of sensors (see Figure 6). Notably, we use
a classifier that is trained with samples from normal operation
and simulated samples from ADS-B spoofing.

Results. The resulting average scores of all three scenarios are
depicted in Figure 9. One can see that the score for normal
operation is very close to 1, while any form of ADS-B spoofing
drastically reduces the average score across all 1000 runs.
This change is almost immediately after the attack has been
launched and continues to decrease afterwards. Furthermore,
the scenarios impact the scores differently. From an attacker’s
perspective, injecting reports from multiple but not from all
sensors is superior to all other strategies.

We argue that even an optimized attacker strategy cannot
emulate typical reception patterns by only affecting specific
sensors. Since sensors are geographically distributed at un-
known positions, an attacker cannot systematically control
which and how many sensors receive the fake reports. Even-
tually, an attacker needs to broadcast from a location close
to the claimed position to emulate realistic message reception
patterns, virtually becoming a legitimate broadcast from the
advertised position.

Even when targeting multiple sensors, constantly missing
reports from sensors within the reception range is a strong
indication for some kind of injection. Naturally, the number
of sensors observing the cluster where the injection takes
place impacts the significance. The patterns have less vari-
ations when fewer sensors are operated and the differences
to malicious patterns will be less obvious. Figure 10 shows
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Fig. 10. The number of sensors observing the cluster of the reported position
has an impact on the classification performance. We can detect a tendency
towards lower scores when the sensor coverage increases.

the average score in relation to the number of observing
sensors. Having only three sensors, the attacker can remain
undetected in more cases than in clusters with a sensor
coverage of 10, 30, or 50.

3) Sensor Control/Sybil Attack: To evaluate our detection
performance of sensor control/Sybil attacks, we again focus
on the outcome of the cross check. We consider two sce-
narios with different numbers of compromised sensors, i. e.,
a single sensor or equality between the attacker’s sensors
and the number of sensors already observing that specific
airspace. Notably, the attackers’ sensors initially participate
normally and are already considered when message reception
patterns are trained. After tattack, the attacker starts to use
the controlled sensors to inject an aircraft track. Compared
to our assumptions for ADS-B spoofing, the attacker is now
capable of emulating arbitrary reception patterns using all the
controlled sensors while benign sensors within the same cluster
remain unaffected.

Results. The results are very similar to the ADS-B spoofing
results. The impact on the score is immediate and can be
clearly distinguished from normal behavior. The reasoning
behind the similar results are based on the benign sensors that
are unaffected by the attacker. A message injection from the
controlled sensors represents the very unlikely case of a high
number of benign sensors missing on the same message. The
detection of Sybil attacks is hence based on missing reports
rather than all sensors agreeing on the same message. Figure 10
can be converted to this scenario when considering the sensor
coverage of only the uncompromised sensors.

Nevertheless, some limitations need to be highlighted. If
the attacker controls every sensor for one cluster, arbitrary
patterns can be emulated and we have no chance of detecting
the attack. However, as soon as the attacker tries to inject
reports for clusters that are already observed by sensors, the
attack can be detected. The vast majority of airspace is already
observed by at least one sensor (see Table IX). We argue that
as long as the majority of benign sensors operate normally, the
attack can still be detected.

4) Combined Attacks: Thus far, we have evaluated the de-
tection performance of individual attacks, i. e., GPS spoofing,
ADS-B spoofing, and sensor control/Sybil attacks. We now
analyze if any attack combination can increase the attacker’s
chance of remaining undetected. Notably, sensor control is
superior to ADS-B spoofing since a fully compromised sensor
cannot only inject any form of false ADS-B reports (as it is the

Fig. 11. The GPS spoofing classifier yields lower average scores for the
combination of GPS spoofing and ADS-B spoofing. The attack parameters
are set to α = 5◦ and multiple affected sensors.

Fig. 12. The ADS-B spoofing classifier yields slightly better average scores
in comparison to the combination of ADS-B spoofing and GPS spoofing. The
attack parameters are set to α = 5◦ and multiple affected sensors.

case for ADS-B spoofing) but also drop any other messages the
sensor may receive. Hence, ADS-B spoofing can be considered
a subset of the sensor control/Sybil attack class. The success
of their combination can be upper bounded by the success
an attacker would have who instead also controls the sensors
affected by ADS-B spoofing. While an attacker controlling a
subset of sensors may still decide to additionally spoof other
sensors, the detection performance is closely tied to the number
of benign sensors.

We focus on reports affected by GPS spoofing and ADS-B
spoofing at the same time, i. e., a fake GPS track that is injected
via ADS-B spoofing. We set the deviation α to 5◦ and assume
an attacker to inject the track via spoofing multiple sensors.
We consider the impact on the detection performance from
two different directions. Figure 11 shows the change based on a
classifier that is indicative for GPS spoofing. Figure 12 depicts
the other perspective, where the ADS-B spoofing classifier
evaluates the attack combination.

Results. Comparing the detection performance of fake GPS
spoofing reports to additional ADS-B spoofing, one can clearly
notice the sudden drop in score due to the ADS-B spoofing in
the combination. Over the cause of 30min, the average score is
constantly lower rendering the combination unfavorable for the
attacker. Surprisingly, from the perspective of ADS-B spoofing,
we can notice that the attack combination actually results in
slightly higher scores and that the effect increases over time.
It seems that a combination favors the attacker, however, the
score differences are due to a change that is not reflected in
the figure: By additionally manipulating the GPS positions,
the fake track faster approaches edge areas that are observed
by less sensors and hence the classification looses significance
(compare Figure 10). As long as enough benign sensors are
unaffected, any attack combination does not favor the attacker.
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Fig. 13. The confusion matrix of our classifier deciding the type of attack
when confronted with tracks representing: Normal Operation, GPS Spoofing,
or ADS-B Spoofing. We set α = 20◦ in the GPS spoofing case and ADS-B
spoofing affects multiple sensors.

5) From Single Reports to Moving Tracks: In our evalua-
tion, we linked the classification results of individual reports
to make a decision for an entire aircraft track. While single
reports may be falsely classified as malicious, time windowing
mitigates this effect. The trained models for different clusters
are separated and some may be more concise than others.
A fact that facilitates our detection scheme is the intrinsic
movement of aircraft such that a track traverses many different
clusters over its course. As a result, the combined decisions
of multiple clusters benefits from clusters with higher sensor
coverage, eventually yielding a very high classification perfor-
mance even when clusters are involved that are hard to decide.

B. Attack Analysis: Type of Attack

So far, we have used a different classifier for each con-
sidered attack vector. The type of attack can be trivially
determined by the classifier that indicated the attack. We
neglected the possibility that classifiers, e. g., tailored towards
GPS spoofing detection, may also raise an alarm when faced
with ADS-B spoofing, and vice versa. Note that, when no
attack is applied no classifier will yield any false alarm due to
the way we set our thresholds. We now analyze whether we
can tell attack patterns apart. In order to evaluate the ability to
differentiate between our simulated attacks, we transform the
binary classification into a multiclass classification that decides
the type of attack. We trained a DT classifier with reports from
GPS spoofing and ADS-B spoofing. Since both attacks have
multiple configurations, we chose a deviation of 20◦ for GPS
spoofing and multiple sensors affected for ADS-B spoofing.
We apply a time windowing of w = 15min and evaluate
the result at tattack + 30min. Figure 13 depicts the confusion
matrix of the classification results.

Results. Considering aircraft tracks without any attack mod-
ification applied, the combined classifier yields no false clas-
sifications. For GPS spoofing with α = 20◦, 78.5% of
the randomized runs are detected and correctly identified,
while 13.9% are still considered normal. Approx. 7.6%of the
cases are assigned as ADS-B spoofing. In comparison, 85.4%
of ADS-B spoofing tracks are classified correctly, 4.2% are
decided to be normal, and 10.4% are mixed with GPS spoof-
ing. Our classifier struggles with this separation due to the
similar impact on reception patterns in the early phases of
GPS spoofing. All in all, the majority of attacks were correctly
assigned and separated.

C. Attack Analysis: Affected Sensors

We generally differentiate between sensors that fell victim
to an attack themselves and sensors that are actively collab-
orating. For instance, in a GPS or ADS-B spoofing attack,
sensors may be faced with bogus input data, however, they
are still functioning correctly and are otherwise conform with
their intended behavior. While for GPS spoofing attacks the
reception patterns reflect normal behavior—but for a different
message origin as claimed, the reception patterns for ADS-B
spoofing attacks are altered. When our attack analysis reveals
the type of attack being of the latter case, the reporting sensors
may be disconnected from the network and excluded from the
cross checking procedure of other reports. These sensors are
directly affected by the attack and their recordings cannot be
trusted. However, once the attack is concluded, the identified
sensors may be reactivated to again contribute to the network.

On the other hand, if the attack analysis reveals a sensor
control/Sybil attack, we are faced with compromised sensors
actively launching attacks on the network. All sensors that
reported the reception of identified fake reports need to be
considered as part of an attacker-controlled sensor union.
Any shared reports from such sensors cannot be considered
trustworthy. Their participation in the crowdsourcing network
must be shut down and their forwarded reports filtered out
accordingly to recover the integrity of the network.

D. Impact of Grid Resolution

The resolution of our considered underlying grid deter-
mines the process of assigning reports and sensors to clus-
ter Cj . The higher the grid resolution, the finer is the differen-
tiation between regions and eventually their reception patterns.
However, increasing the grid resolution not only increases the
computational load but can also lead to overfitting areas to the
monitoring sensors. For instance, since we do not know the
exact locations of sensors, we need to learn the observed area
from reported ADS-B messages. The chances that a sensor
did not report any message from a specific area increase
with smaller sizes even though the sensor actually observes
that airspace. While we chose a grid size with edge lengths
of 10 km to compare the attack detection performance, we also
evaluated the impact of different grid resolutions and gained
the following insights.

Results. The greater the proliferation of a cluster is, the more
sensors are potentially observing at least parts of the area. As a
consequence, the reception patterns feature more active sensors
and have a higher variance within the same cluster. However,
this also makes it harder to have a clear distinction between
normal operation and malicious patterns. On the other hand,
clusters with very tight areas actually prevent the estimation
of meaningful reception patterns and thus also decrease the
validity. Since the attack detection performance is related to
the differences in the reception patterns, we determined a
reasonable trade-off between sensitivity and generalization,
which resulted in the grid resolution of 10 km.

E. Time Dependency

To evaluate the time dependency of our detection scheme,
we additionally assess its performance on a dataset gathered for
February 17, 2020. This dataset represents a normal weekday,
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TABLE VIII. GPS SPOOFING DETECTION PERFORMANCE - FEBRUARY 17, 2020

Deviation α [◦] Attack Detection [%] Detection Delay (Median ± SD) [min] FPR [%]
w = 5 w = 10 w = 15 w = 5 w = 10 w = 15

1 79, 51 86.83 91.71 39.33± 10.08 34.27± 10.08 27.93± 10.30 0
2 90.73 93.66 94.63 21.55± 9.47 20.45± 9.91 18.65± 8.80 0
5 97.07 97.07 98.04 12.63± 9.46 11.92± 8.80 12.00± 8.30 0

10 99.02 98.54 99.02 8.17± 9.23 9.33± 7.83 9.68± 7.72 0
20 99.51 99.02 99.02 6.28± 9.04 7.50± 7.10 7.68± 6.86 0
45 100 100 100 5.15± 7.15 6.53± 7.04 6.88± 6.91 0

two days after the previously analyzed day. This day was
chosen due to a temperature drop and rainy weather and thus
represents unfavorable conditions. The number and paths of
flights on this new day is similar (but not identical) to the
previously selected dataset. During this day, the OpenSky Net-
work recorded over 135 million ADS-B reports and 728 active
sensors. The structure of the sensor network on both days
is strongly overlapping showing very minor fluctuations. The
evaluations steps are kept the same to our previous analysis,
revealing the following results.

Results. Overall, the results show very little deviations from
the previous results and the extent of variation is comparable
to the homogeneity of the sensor network. In particular, we
present results showing the detection performance considering
GPS spoofing attacks in Table VIII. The results for both
ADS-B spoofing and sensor control/Sybil attacks are over-
lapping with the prior results such that differences cannot be
captured visually, hence we abstain from presenting identical
figures. All in all, this provides evidence which suggests that
(i) different flight paths, (ii) varying airspace density, and
(iii) changing weather conditions only slightly influence the
detection performance of our scheme, indicating its robustness
against these parameters.

F. Computational Performance

The implementation of the ML-based cross check imposed
the challenge of handling more than 132 million reports from
more than 700 sensors, just for a single day and only in
Europe. With this massive amount of data, training on the
entire dataset became infeasible on off-the-shelf equipment. To
bring down the required time for training and classification,
we decided to split the data into grids, where the data in
each grid can be processed separately. Moreover, the training
duration is a one-time cost and was well doable on standard
hardware. If implemented on a designated server, the required
time is expected to be lowered by magnitudes. As a result, even
retraining on a regular basis becomes possible. The recurring
costs of classifications, on the other hand, are only a minor
fraction of the training duration such that all classifications
for an entire day only took a few minutes and can thus be
performed efficiently in real-time.

VI. DISCUSSION

We discuss important properties of our developed sys-
tem: (i) implicit trust in the data source, (ii) limitations,
(iii) attacker’s knowledge, (iv) false alarm events, (v) the
current attack resilience, (vi) optimized sensor deployment,
and (vii) further extensions.

A. Implicit Data Source Trust

We base the evaluation of our trust system on data provided
by the OpenSky Network, which records real-world air-traffic
reports. However, we take the data ”as is” and consider it to
represent normal behavior. We cannot exclude the existence of
erroneous data or even reports that resulted from some kind
of attack. Nevertheless, we thoroughly analyzed the reports of
our selected day (February 15, 2020) without any findings.
While our system is designed to analyze live data, it can also
be used to find unusual events and potential attacks in the
recorded air-traffic reports in a retrospective view.

B. Limitations

While we state that our system can detect all considered
attacks (i. e., GPS spoofing, ADS-B spoofing, and sensor
control/Sybil attack), our system is subject to limitations.
Independent of the attack, any verification can only be applied
in covered airspaces (see Figure 3) which excludes, e. g., the
open sea. For the cross check, we further require at least three
sensors to yield meaningful results. Given these requirements,
we achieved detection delays on the order of minutes, which is
a limiting factor in situations where fast reactions are required.
We tuned our system towards minimal false alarm events
requiring us to delay decision. Allowing the existence of false
alarms can significantly lower this delay.

Some limitations are specific to the types of attacks as we
explain as follows:

1) GPS Spoofing: The limitations of GPS spoofing de-
tection are based on the extent of applied deviation and the
grid resolution. With finer grid resolution, the more subtle
deviations can be detected. However, the resolution can only
be increased to a certain degree. Based on our simulations, a
resolution of 10 km was identified as a good choice. Fixing the
grid resolution to 10 km, we consider our system to reliably
detect more than 96% of GPS spoofing attacks with a deviation
of at least 5◦. Less deviation can only be detected with lower
probability or after significantly more time.

2) ADS-B Spoofing: When facing an ADS-B spoofing
attack, the detection capability of our system requires the
positions of sensors to remain concealed such that an attacker
cannot selectively target individual sensors with, e. g., multiple
antennas. If an attacker can pinpoint sensors to emulate realis-
tic reception patterns, our system would not be able to detect
malicious injections.

3) Sensor Control/Sybil Attack: Naturally, an attacker con-
trolling every sensor could overcome any verification scheme
due to full control over reported data. Our detection system
relies on the existence of benign sensors. In an area with active
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malicious sensors, we require at least three benign sensors to
be able to detect the attack. Notably, we do not consider any
form of identity spoofing, in which reports are injected with
sensor identities without any control over the indicated sensors.
This must be prevented on other layers.

In circumstances that stay within these limitations, our
detection scheme achieves the stated performance figures. Out-
side the limitations, the performance may be heavily degraded.
Fortunately, areas where the number of sensors is a limitation
are constantly shrinking due to increasing sensor coverage (see
Section VI-E).

C. Attacker’s Knowledge

In our performance analysis of detecting ADS-B spoofing
and Sybil attacks, we considered attackers controlling a certain
number of sensors. An attacker with full awareness of our
system might try to optimize the pursued attack strategy and
imitate authentic reception patterns. For both ADS-B spoofing
and Sybil attacks, this can only be achieved to a certain
degree and we argue that an attacker cannot overcome the
detection scheme in regions with enough sensor redundancy.
Even a fully aware attacker does not know the exact locations
of other sensors, and hence it is not possible to manipulate
them in a targeted manner (e. g., through ADS-B spoofing).
Moreover, an attacker cannot access the unprocessed readings
of other sensors in an effort to localize them. In the case of
ADS-B spoofing, where an attacker affects multiple sensors,
the actual victims cannot be targeted separately. In the case
of a Sybil attack, the attacker could try to emulate realistic
reception patterns using the controlled sensors, but cannot do
so with the sound user-operated sensors. The better a cluster
is covered by benign sensors, the more conspicuous an attack
will be. We, therefore, argue that even an attacker, fully aware
of our system, cannot overcome the detection scheme due to
the concealed locations of other sensors.

D. False Alarm Events

We acknowledge that any false alarm event, i. e., a falsely
detected attack, greatly hinders the acceptance of our devel-
oped system. Especially when considering safety-related air-
traffic surveillance, false alarm events would distract air-traffic
controllers leading to the opposite of what we wanted to
achieve. With our choice of setting thresholds, we obtained 0%
false positives over a dataset of 1000 randomly sampled tracks.
Admittedly, this does not guarantee the absent of false alarms.
However, our system can be tuned with updated thresholds
and time windows if false alarms arises. Even for broader
thresholds, we expect meaningful attack detection rates within
reasonable delays.

E. Current Attack Resilience

The crowdsourcing sensors are at the core of our trust
system and their distribution and density are of utter impor-
tance for the detection of attacks. The validity of the cross
check, i. e., wireless witnessing, increases with the number
of sensors covering the same air segments. Thus, the more
redundancy, the more variations exist in the reception patterns
and the better malicious attacks and sensors can be detected.
We analyzed the current resilience of the OpenSky Network

TABLE IX. COVERAGE REGIONS - FEBRUARY 15, 2020

Coverage ≥ 3 ≥ 5 ≥ 10 ≥ 20 ≥ 50

Area [km2] 6,449,000 4,842,500 3,115,400 1,970,700 659,200
Total [%] 63.35 47.59 30.60 19.36 6.48

Fig. 14. The optimized deployment of new sensors identifies regions that
benefit the most from better coverage. We consider the resilience increase with
respect to the entire network, where darker colors indicate higher benefits.

by considering regions related to different coverages. Table IX
states the breakdown of the total covered area and relates it to
the total surface of the European continent.

F. Optimizing Sensor Deployment

To further develop the security of the network, we encour-
age the deployment of new sensors in less covered areas to
optimize the current geographical distribution by optimized
network expansion. Based on the coverage information of the
existing sensors in the network (see Figure 3), we optimize
the placement of new sensors with the goal of filling blind
spots. Our optimization target is an overall coverage increase
and therefore a hardening against attacks.

To provide an overview of areas that would benefit the most
from the deployment of new sensors, we weight the need for
better coverage according to the current sensor redundancy of
the network. The lower the coverage, the higher is the demand
for new sensors. We restrict possible locations to be on land.
We further assume an average reception range of 400 km and
simplify the observable airspace to be a circle around the
sensor. Figure 14 depicts areas according to their coverage
increase for the entire network. While in Central Europe the
deployment of new sensors does not significantly impact the
overall resilience against attacks, new sensor setups close to
the coastlines can greatly increase the attack resilience.

G. Extensions

We discuss three extensions of our trust system with the
goal of better reflecting real-world characteristics as well as
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introducing sensor reputation to weight their impact on the
trust assessment process. Further, dynamic learning strategies
can keep attack detection strategies updated.

Time Dependence. Since ADS-B broadcasts use the wireless
medium, message collisions can occur when the frequency
band is saturated. The resulting rate of message loss is depen-
dent on the airspace density which in turn changes over time
based on the operating hours of airports. The more aircraft
share the same medium, the higher the chances are of mes-
sages being lost. While our current system estimates reception
probabilities based on averaged one-day observations, a future
extension of our trust system may account for time-dependent
message loss.

Sensor Reputation. In the currently deployed crowdsourcing
network, we consider each sensor as equivalent to any other
sensor. To refine this assumption, sensors may be assigned
a reputation rating. A portion of the sensors are operated
by personal contacts or registered users. Those sensors are
expected to be less likely to participate in active attacks and we
could link the reputation of the operator to possessed sensors.
Furthermore, the hardware implementation could also be taken
into account, where some implementations are more robust to
defects than others. By incorporating sensor reputation, the
validity of telling normal behavior and attack scenarios apart
could be further improved.

Dynamic Learning. Finally, we envision the implementation
of dynamic learning techniques. A dynamic learning approach
could constantly update the trained message reception patterns.
This allows to incorporate shifts which can occur when, e. g.,
sensors are joining or leaving the network, the reception range
of sensors changes, or transmission ranges are altered. More-
over, new attack vectors may arise in the future. A (re-)training
of our classifiers with updated attack vector definitions ensures
that the trust evaluation process keeps its validity when facing
currently unknown attacks.

VII. RELATED WORK

This paper is partly based on the work by Raya et al. [32]
who were the first to propose a framework for data-centric
trust establishment with a focus on short-lived associations
in volatile environments and on resulting work approaching
distributed sensor events [23], [59]. While our proposal for
trust establishment specifically targets ADS-B based air-traffic
surveillance, similar trust requirements exist in Vehicular Ad
Hoc Networks (VANETs) or industrial wireless sensor net-
works. While Petit et al. [29] discuss detection systems for
VANETs based on dynamic thresholds, Ruj et al. [34] focus
on validating message consistency to identify misbehavior.
Whereas Sun et al. [51] present a trust framework to detect
faulty data in VANETs, Hundman et al. [17] apply similar
data verification schemes for spacecraft. Dästner et al. [8]
classify military aircraft based on their ADS-B report trace.
Wang et al. [55] analyzes the feasibility of false data filtering in
general sensor networks and Henningsen et al. [13] especially
focus on industrial networks. In comparison, our system is tai-
lored towards a network of geographically distributed sensors.

While in practice still vulnerable, the insecurity of ADS-B
has long been highlighted from an academic perspective.

Purton et al. [31] analyzed critical information flows and
focused primarily on technical solutions. They applied a
qualitative assessment method [56] that identified potential
shortcomings. In contrast, McCallie et al. [24] applied a risk
analysis to assess the impact of different attack vectors and
recommended solutions to be incorporated into the ADS-B
implementation plan. Moreover, Strohmeier et al. [44], [48]
provide an overview of system-inherent problems and illustrate
the security challenges of ADS-B in future air-traffic monitor-
ing. Smith et al. [43] empirically analyze pilots’ reactions to
wireless attacks on avionic systems and show that undetected
attacks can lead to dangerous distractions. There are several
open attack vectors that, from a scientific perspective, would
allow attacking ADS-B on different levels. Chevrot et al. [3]
present a framework for arbitrary false data injection and
outline detection strategies. Nevertheless, we must always
consider the necessary effort for an attack and its feasibility
in a real-world scenario.

Moser et al. [25] take a perspective on the feasibility of at-
tacking ADS-B communication and consider an attacker using
a multi-device setup. Recent work showed that such strong
adversaries become increasingly realistic [18]. Furthermore,
Costin and Francillon [5] demonstrated that the step from a
scientific attack concept to a real attack is not necessarily too
wide and managed to inject fake aircraft messages into live
surveillance monitors. Later, Schäfer et al. [36] experimentally
analyzed the practicability of known threats revealing startling
results. In particular, aircraft instrument landing systems are
prone to wireless attacks [35]. Besides these works, which all
focus on aviation applications, Balduzzi et al. [1] proved that
also maritime traffic via Automatic Identification System (AIS)
broadcast messages can be the target of successful attacks.
While the physical constraints of vehicles differ a lot, the
similarity of communication channels helps to map well-
known attacks to this new context.

Besides the large body of offensive work, defensive propos-
als exist in recent research. Strohmeier et al. [46], [49] survey
the existing research on countermeasures. More specifically,
Ghose and Lazos [10] as well as Schäfer et al. [37], [38]
and Liu et al. [22] propose the usage of timing or Doppler-
shift characteristics to detect attacks on ADS-B. While this
cannot protect from attacks, it still helps to identify malicious
or inaccurate messages. Other location verification schemes
and anomaly detection methods are based on RADAR ob-
servations [30], statistical tests [45], or PHY layer informa-
tion [60]. Habler and Shabtai [12] use flight route modelling
and anomaly detection to identify malicious ADS-B messages,
achieving a false alarm rate of 4.5%. Similar false alarm
rates are achieved by Naganawa et al. [26] based on Angle
of Arrival (AoA) measurements. Sun et al. [52] also use AoA
verification but with a single receiver.

First results based on cross-referencing within a distributed
sensor network are illustrated by Strohmeier et al. [50].
Oligeri et al. [27] use IRIDIUM signals to validate GNSS
position solutions. While Wesson et al. [57] discuss solutions
based on cryptography, Kim et al. [21] evaluate a solution
based on protocol extension with timestamps. Our system,
on the other hand, requires no additional measurement infor-
mation different from already collected data and can thus be
implemented without any modifications.
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Aside from ADS-B and AIS, the insecurity of GPS has
been repeatedly demonstrated, while Humphreys et al. [16]
were the first to publish an attack on GPS, where they managed
to spoof GPS signals. Tippenhauer et al. [53] later analyzed the
requirements of successful GPS spoofing attacks and reasoned
about possible attacker positions when facing a specific sensor
deployment. Zeng et al. [62] demonstrate the insecurity of
road navigation systems via a stealthy manipulation based on
GPS spoofing. Considering multiple sensors, countermeasures
exist for the detection of GPS spoofing attacks [20], [58],
[61] and also for spoofer localization [19], [61]. However,
these countermeasures depend on ground-based sensors and
do not exploit the network volatility. This limits the impact
and consequences to a fraction of real-world use cases.

Overall, we experience a gap between scientifically pro-
posed defenses and deployed countermeasures. As a conse-
quence, protecting ADS-B is an open challenge that demands
scientific advances to consider the requirements and limitations
of the real world.

VIII. CONCLUSION

This work approached a trust evaluation system for ADS-B
based air-traffic surveillance using an already existing infras-
tructure of crowdsourcing sensors. We demonstrated how our
solution leverages sensor redundancy to establish wireless
witnessing to protect an otherwise unsecured open system.
To this end, we tested our system against prominent attack
vectors showing that we cannot only detect them but also draw
conclusions about their type and the participating sensors. The
validity of our trust evaluation depends on the redundancy
of sensors observing same airspace segments. Moreover, we
outlined considerations for future sensor deployment hardening
the network’s security by optimized expansions.
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[38] M. Schäfer, P. Leu, V. Lenders, and J. Schmitt, “Secure Motion Verifi-
cation using the Doppler Effect,” in ACM Conference on Security and
Privacy in Wireless and Mobile Networks, ser. WiSec ’16. Darmstadt,
Germany: ACM, Jul. 2016, pp. 135–145.
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“DeepSIM: GPS Spoofing Detection on UAVs using Satellite Imagery
Matching,” in Annual Computer Security Applications Conference, ser.
ACSAC ’20. ACM, Dec. 2020, pp. 304–319. [Online]. Available:
https://doi.org/10.1145/3427228.3427254

[59] H. Yang, S. Fong, G. Sun, and R. Wong, “A Very Fast Decision
Tree Algorithm for Real-Time Data Mining of Imperfect Data Streams
in a Distributed Wireless Sensor Network,” International Journal of
Distributed Sensor Networks, vol. 8, no. 12, Dec. 2012.

[60] X. Ying, J. Mazer, G. Bernieri, M. Conti, L. Bushnell, and R. Pooven-
dran, “Detecting ADS-B Spoofing Attacks using Deep Neural Net-

16



works,” in IEEE Conference on Communications and Network Security,
ser. CNS ’19. Washington, D.C., USA: IEEE, Jun. 2019, pp. 187–195.

[61] D.-Y. Yu, A. Ranganathan, T. Locher, S. Čapkun, and D. Basin, “Short
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